Have a personal or library account? Click to login
Sensitivity Jump of Micro Accelerometer Induced by Micro-fabrication Defects of Micro Folded Beams Cover

Sensitivity Jump of Micro Accelerometer Induced by Micro-fabrication Defects of Micro Folded Beams

By: Wu Zhou,  Lili Chen,  Huijun Yu,  Bei Peng and  Yu Chen  
Open Access
|Aug 2016

References

  1. [1] Frosio, I., Pedersini, F., Borghese, N.A. (2010). Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62, 405-418.
  2. [2] Won, S.P., Golnaraghi, F. (2010). A triaxial accelerometer calibration method using a mathematical model. IEEE Transactions on Instrumentation and Measurement, 59, 2144-2153.10.1109/TIM.2009.2031849
  3. [3] Sipos, M., Paces, P., Rohac J. & Novacek P. (2012). Analyses of Triaxial Accelerometer Calibration Algorithms. Sensors Journal, IEEE, 12, 1157-1165.10.1109/JSEN.2011.2167319
  4. [4] Cobb, C.L., Agogino, A.M. (2010). Case-based reasoning for evolutionary MEMS design. Journal of Computing and Information Science in Engineering, 10, 031005.10.1115/1.3462920
  5. [5] Ruzziconi, L., Ramini, A.H., Younis, M.I., Lenci, S. (2014). Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor. Sensors, 14, 17089-17111.10.3390/s140917089420821525225873
  6. [6] Ku, I.S.Y., Reddyhoff, T., Holmes, A.S., Spikes, H.A. (2011). Wear of silicon surfaces in MEMS. Wear, 271, 1050-1058.10.1016/j.wear.2011.04.005
  7. [7] Meral, F.C., Basdogan, I. (2006). Design methodology for microelectromechanical systems. Case study: Torsional scanner mirror. Journal of Mechanical Design, 129, 1023-1030.10.1115/1.2756087
  8. [8] Sardan, O., Alaca, B.E., Yalcinkaya, A.D., Bøggild, P., Tang, P.T., Hansen, O. (2007). Microgrippers: A case study for batch-compatible integration of MEMS with nanostructures. Nanotechnology, 18, 375501.10.1088/0957-4484/18/37/375501
  9. [9] Tanner, D.M., Parson, T.B., Corwin, A.D., Walraven, J.A., Wittwer, J.W., Boyce, B.L., Winzer, S.R. (2007). Science-based MEMS reliability methodology. Microelectronics Reliability, 47, 1806-1811.10.1016/j.microrel.2007.07.061
  10. [10] Iannacci, J. (2015). Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays, 37, 62-71.10.1016/j.displa.2014.08.003
  11. [11] He, X., Su, W., Peng, B., Zhou, W. (2012). Electrostatic compensation method in frequency robustness design of micro accelerometer. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11, 043001.10.1117/1.JMM.11.4.043001
  12. [12] Zhou, W., Li, B., Peng, B., Su, W., He, X. (2012). Prediction of gap asymmetry in differential micro accelerometers. Sensors, 12, 6857-6868.10.3390/s120606857343595522969325
  13. [13] Zhou, W., Yu, H., Peng, B., Shen, H., He, X., Su, W. (2013). Modeling the microstructure curvature of Boron-doped silicon in bulk micromachined accelerometer. Materials, 6, 244.10.3390/ma6010244545211128809305
  14. [14] Zhou, W., Chen, Y., Peng, B., Yang, H., Yu, H., Liu, H., He, X. (2014). Air damping analysis in comb microaccelerometer. Advances in Mechanical Engineering, 6.10.1155/2014/373172
  15. [15] Zhou, W., Yu, H., Zeng, J., Peng, B., Zeng, Z., He, X., Liu, Y. (2015). Improving the dynamic performance of capacitive micro-accelerometer through electrical damping. Microsystem Technologies, 1-9.
  16. [16] Senturia, S.D. (2001). Microsystem Design. Kluwer Academic Publishers.10.1007/b117574
  17. [17] Yu, H., Zhou, W., Peng, B., He, X., Hao, X., Zeng, Z. (2014). Modeling the Boron-doping silicon beam by a multilayer model. Mathematical Problems in Engineering, 2014, 6.10.1155/2014/894286
  18. [18] Frosio, I., Pedersini, F., Borghese, N.A. (2009). Autocalibration of MEMS accelerometers. IEEE Transactions on Instrumentation and Measurement, 58, 2034-2041.10.1109/TIM.2008.2006137
  19. [19] Wai, C.W., Azid, I.A., Majlis, B.Y. (2011). Theoretical analysis of stiffness constant and effective mass for a round-folded beam in MEMS accelerometer. Strojniski Vestnik / Journal of Mechanical Engineering, 57, 517-525.
  20. [20] Bustillo, J.M., Howe, R.T., Muller, R.S. (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 86, 1552-1574.10.1109/5.704260
  21. [21] Chabloz, M., Sakai, Y., Matsuura, T., Tsutsumi, K. (2000). Improvement of sidewall roughness in deep silicon etching. Microsystem Technologies, 6, 86-89.10.1007/s005420050003
  22. [22] McAuley, S.A., Ashraf, H., Atabo, L., Chambers, A., Hall, S., Hopkins, J., Nicholls, G. (2001). Silicon micromachining using a high-density plasma source. Journal of Physics D: Applied Physics, 34, 2769.
  23. [23] Liu, H.C., Lin, Y.H., Hsu, W. (2003). Sidewall roughness control in advanced silicon etch process. Microsystem Technologies, 10, 29-34.10.1007/s00542-003-0309-8
  24. [24] Li, J., Liu, A.Q., Zhang, Q.X. (2006). Tolerance analysis for comb-drive actuator using DRIE fabrication. Sensors and Actuators A: Physical, 125, 494-503.10.1016/j.sna.2005.08.002
  25. [25] Gere, J.M., Goodno, B.J. (2009). Mechanics of Materials. Cengage Learning.
Language: English
Page range: 228 - 234
Submitted on: Jan 3, 2016
|
Accepted on: Aug 10, 2016
|
Published on: Aug 19, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Wu Zhou, Lili Chen, Huijun Yu, Bei Peng, Yu Chen, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.