Have a personal or library account? Click to login
Influence of Torso Model Complexity on the Noninvasive Localization of Ectopic Ventricular Activity Cover

Influence of Torso Model Complexity on the Noninvasive Localization of Ectopic Ventricular Activity

Open Access
|May 2016

References

  1. [1] Bogun, F., Crawford, T., Reich, S., et al. (2007). Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: Comparison with a control group without intervention. Heart Rhythm, 4 (7), 863-867.10.1016/j.hrthm.2007.03.003
  2. [2] Senderek, T., Bednarek, J., Lelakowski, J. (2015). The effectiveness of RF ablation of ventricular ectopic beats made using selected mapping techniques. Polski Merkuriusz Lekarski, 39 (233), 271-276.
  3. [3] Tysler, M., Tinova, M. (1993). Representation of myocardium depolarization by simple models. In Computers in Cardiology 1993, September 5-8, 1993. IEEE, 703-706.10.1109/CIC.1993.378305
  4. [4] Punshchykova, O., Svehlikova, J., Kneppo, P., Maksymenko, V., Tysler, M. (2014). Noninvasive localization of the ectopic focus using time integral ECG mapping. Experimental and Clinical Cardiology, 20 (7), 1564-1570.
  5. [5] Tysler, M., Svehlikova, J., Punshchykova, O., Kneppo, P., Maksymenko, V. (2015). Noninvasive localization of ectopic ventricular activity using BSPM and different patient torso models. In IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO), April 21-24, 2015, Kyiv, Ukraine. IEEE, 325-329.10.1109/ELNANO.2015.7146902
  6. [6] Rosík, V., Karas, S., Hebláková, E., Tyšler, M., Filipová, S. (2007). Portable device for high resolution ECG mapping. Measurement Science Review, 7 (6), 57-61.
  7. [7] TatraMed Software s.r.o. (2016). TomoCon PACS. http://www.tatramed.sk/pacsItem?element=3&parentId=18&type=19
  8. [8] Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., et al. (2002). Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation, 105 (4), 539-542.
  9. [9] Barnes, J.P., Johnston, P. (2016). Application of robust Generalised Cross-Validation to the inverse problem of electrocardiology. Computers in Biology and Medicine, 69, 213-225.10.1016/j.compbiomed.2015.12.011
  10. [10] Tuboly, G., Kozmann, G., Maros, I. (2015). Computational aspects of electrocardiological inverse solutions. IFAC-PapersOnLine, 48 (20), 48-51.10.1016/j.ifacol.2015.10.113
  11. [11] Lai, D., Liu, Ch., Eggen, M.D., Iazzo, P., He, B. (2010). Equivalent moving dipole localization of cardiac ectopic activity in a swine model during pacing. IEEE Transactions on Information Technology in Biomedicine, 14 (6), 1318-1326.
  12. [12] Xanthis, V.P., Bonovas, M., Kyriacou, G.A. (2007). Inverse problem of ECG for different equivalent cardiac sources. Piers Online, 3 (8), 1222-1227.10.2529/PIERS070220144924
  13. [13] Cluitmans, M.J.M., Peeters, R.L.M., Westra, R.L., Volders, P.G.A. (2015). Noninvasive reconstruction of cardiac electrical activity: Update on current methods, applications and challenges. Netherlands Heart Journal, 23 (6), 301-311.10.1007/s12471-015-0690-9
  14. [14] van der Graaf, A.W.M., Bhagirath, P., de Hooge, J., de Groot, N.M.S., Gotte, M.J.W. (2016). A priori model independent inverse potential mapping: The impact of electrode positioning. Clinical Research in Cardiology, 105, 79-88.10.1007/s00392-015-0891-7
  15. [15] Lux, R.L., Smith, R.F., Abildskov, J.A. (1978). Limited lead selection for estimating body surface potentials in electrocardiography. IEEE Transactions on Biomedical Engineering, 25 (3), 270-276.10.1109/TBME.1978.326332
  16. [16] Hoekema, R., Uijen, G.J., van Oosterom, A. (1999). On selecting a body surface mapping procedure. Journal of Electrocardiology, 32 (2), 93-101.10.1016/S0022-0736(99)90088-2
  17. [17] Cheng, L.K., Sands, G.B., Pullan, A.J. (2005). Construction of patient specific geometries suitable for the inverse problem of electrocardiography. In 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEEEMBS 2005), January 17-18, 2005. IEEE, 7201-7203.10.1109/IEMBS.2005.161617017281939
  18. [18] Tysler, M., Svehlikova, K., Punshchykova, O., Lenkova, J. (2013). Influence of torso model accuracy on the noninvasive localization of heart pathologies. Acta Mechanica Slovaca, 17 (3), 18-25.10.21496/ams.2013.028
  19. [19] Prakosa, A., Malamas, P., Zhang, S., Pashakhanloo, F., Arevalo, H., Herzka, D.A., et al. (2014). Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology. Progress in Biophysics & Molecular Biology, 115 (2-3), 226-234.10.1016/j.pbiomolbio.2014.08.009425386625148771
  20. [20] Rahimi, A., Wang, L. (2015). Sensitivity of noninvasive cardiac electrophysiological imaging to variations in personalized anatomical modeling. IEEE Transactions on Biomedical Engineering, 62 (6), 1563-1575.10.1109/TBME.2015.2395387458172925615906
  21. [21] Keller, D.U.J., Weber, F.M., Seemann, G., Doessel, O. (2010). Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Transactions on Biomedical Engineering, 57 (7), 1568-1576.10.1109/TBME.2010.204648520659824
  22. [22] Zemzemi, N., Dobrzynski, C., Bear, L., Potse, M., Dallet, C., Coudiére, Y., Dubois, R., Duchateau, J. (2015). Effect of the torso conductivity heterogeneities on the ECGI inverse problem solution. In Computing in Cardiology 2015, September 6-9, 2015. IEEE, 233-236.10.1109/CIC.2015.7408629
  23. [23] Ramanathan, C., Rudy, Y. (2011). Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. Journal of Cardiovascular Electrophysiology, 12 (2), 241-252.
  24. [24] Ghodrati, A., Brooks, D.H., Tadmor, G., MacLeod, R.S. (2006). Wavefront-based models for inverse electrocardiography. IEEE Transactions on Biomedical Engineering, 53 (9), 1821-1831.10.1109/TBME.2006.87811716941838
  25. [25] Liu, C., Skadsberg, N.D., Ahlberg, S.E., Swingen, C.M., Iaizzo, P.A., He, B. (2008). Estimation of global ventricular activation sequences by noninvasive 3- dimensional electrical imaging: Validation studies in a swine model during pacing. Journal of Cardiovascular Electrophysiology, 19 (5), 535-540.10.1111/j.1540-8167.2007.01066.x242424718179521
  26. [26] Liu, C., Zhang, X., Liu, Z., Pogwizd, S.M., He, B. (2006). Three-dimensional myocardial activation imaging in a rabbit model. IEEE Transactions on Biomedical Engineering, 53, 1813-1820.
  27. [27] Šťovíček, P., Havránek, Š., Šimek, J., Zborník, M., Mlček, M., Kittnar, O. (2010) Isopotential ECG imaging correctly identified endocardial ectopic activation site in the case of arrhythmia from right ventricular outflow tract. IFMBE Proceedings, 25 (4), 1965-1968.
  28. [28] Coll-Font, J., Erem, B., Stovicek, P., Brooks, D.H., van Dam, P.M. (2015). Quantitative comparison of two cardiac electrical imaging methods to localize pacing sites. Computing in Cardiology 2015, September 6-9, 2015. IEEE, 217-220.10.1109/CIC.2015.7408625
Language: English
Page range: 96 - 102
Submitted on: Jan 28, 2016
|
Accepted on: Apr 11, 2016
|
Published on: May 6, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Olena Punshchykova, Jana Švehlíková, Milan Tyšler, Richard Grünes, Ksenia Sedova, Pavel Osmančík, Jana Žďárská, Dalibor Heřman, Peter Kneppo, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.