Have a personal or library account? Click to login
Thermal conductivity of silicon doped by phosphorus: ab initio study Cover

Thermal conductivity of silicon doped by phosphorus: ab initio study

Open Access
|Mar 2018

References

  1. [1] LIDOW A., STRYDOM J., ROOIJ DE M., REUSCH D., GaN Transistors for Efficient Power Conversion, Wiley, 2015.10.1002/9781118844779
  2. [2] BORGES R., Gallium nitride electronic devices for highpower wireless applications, Application Notes, RF Design, 2001, p. 72.
  3. [3] BERNARDONI M., DELMONTE N., MENOZZI R., CS Mantech Conference, Boston, USA, April 23 - 26, 2012.
  4. [4] PEREZ J.A.F., Thermal Study of a GaN-Based HEMT, PhD Dissertation, University of Notre Dame Indiana, 2012.
  5. [5] VISALLI D., Optimization of GaN-on-Si HEMTs for High Voltage Applications, PhD Dissertation, Katholieke Universiteit Leuven, 2011.
  6. [6] FORNETTI F., Characterisation and Performance Optimisation of GaN HEMTs and Amplifiers for Radar Applications, PhD Dissertation, University of Bristol, 2010.
  7. [7] MACFARLANE D.J., Design and fabrication of Al- GaN/GaN HEMTs with high breakdown voltages, PhD Dissertation, School of Engineering, University of Glasgow, 2014.
  8. [8] VITANOV S., PALANKOVSKI V., MAROLDT S., QUAY R., Solid-State Electron., 54 (2010), 1105.10.1016/j.sse.2010.05.026
  9. [9] STACKHOUSE S., STIXRUDE L., Rev. Mineral. Geochem., 71 (2010), 253.10.2138/rmg.2010.71.12
  10. [10] GREEN M.S., J. Chem. Phys., 22 (1954), 398.10.1063/1.1740082
  11. [11] KUBO R., J. Phys. Soc. Japan, 12 (1957), 570.10.1143/JPSJ.12.570
  12. [12] KUBO R., Rep. Prog. Phys., 29 (1966), 255.10.1088/0034-4885/29/1/306
  13. [13] MULLERPLATHE F.J., Chem. Phys., 106 (1997), 6082.10.1063/1.473271
  14. [14] ZIMAN J.M., Electrons and Phonons, Oxford University Press, 2001.10.1093/acprof:oso/9780198507796.001.0001
  15. [15] KRESSE G., JOUBERT D., Phys. Rev. B, 59 (1999), 1758.10.1103/PhysRevB.59.1758
  16. [16] BLÖCHL P.E., Phys. Rev. B, 50 (1994), 17953.10.1103/PhysRevB.50.179539976227
  17. [17] RÓG T., MURZYN K., HINSEN K., KNELLER G.R., J. Comput. Chem., 24 (2003), 657.10.1002/jcc.10243
  18. [18] KAERGER J., GRINBERG F., HEITJANS P., Diffusion fundamentals, Leipzig University, 2005.
  19. [19] ROHLF J.W., Modern Physics from A to Z, John Wiley & Sons Inc, 1994.
  20. [20] BLATT F.J., Modern Physics, McGraw-Hill, New York, 1992.
  21. [21] KLEMENS P.G., GELL M., Mat. Sci. Eng. A, 245 (1998), 143.10.1016/S0921-5093(97)00846-0
  22. [22] TAMURA S., SHIELDS J.A., WOLFE J.P., Phys. Rev. B, 44 (1991), 3001.10.1103/PhysRevB.44.3001
  23. [23] NIKANOROV S.P., BURENKOV YU.A., STEPANOV A.V., Sov. Phys. Solid State, 13 (1971), 2516.
  24. [24] OKHOTIN A.S., PUSHKARSKII A.S., GORBACHEV V.V., Thermophysical Properties of Semiconductors, "Atom" Publ. House, 1972. (in Russian).
  25. [25] DESAL P.D., J. Phys. Chem. Ref. Data, 15 (1986), 967.10.1063/1.555761
  26. [26] SHANKS H.R., MAYCOCK P.D., SIDLES P.H., DANIELSON G.C., Phys. Rev., 130 5 (1963), 1743.10.1103/PhysRev.130.1743
  27. [27] GLASSBRENNER C.J., SLACK G.A., Phys. Rev., 134 (1964), A1058.10.1103/PhysRev.134.A1058
  28. [28] LEE Y., HWANG G.S., Phys. Rev. B, 86 (2012), 075202.10.1103/PhysRevB.86.075202
  29. [29] ASHEGHI M., KURAB K., KASNAVI R., GOODSON K.E., J. Appl. Phys., 91 (2002), 5079.10.1063/1.1458057
  30. [30] JIN J.S., J. Mechan. Sci.Technol., 28 (2014), 2287.10.1007/s12206-014-0518-3
  31. [31] XIEL J., LEE C., WANG M.-F., LIU Y., FENG H., J. Micromech. Microeng., 19 (2009), 125029.10.1088/0960-1317/19/12/125029
DOI: https://doi.org/10.1515/msp-2017-0115 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 717 - 724
Submitted on: Oct 15, 2016
|
Accepted on: Dec 19, 2017
|
Published on: Mar 20, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 B. Andriyevsky, W. Janke, V.Yo. Stadnyk, M.O. Romanyuk, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.