Have a personal or library account? Click to login
Application of Big Data Analytics in Customization of E-mass Service: Main Possibilities and Obstacles Cover

Application of Big Data Analytics in Customization of E-mass Service: Main Possibilities and Obstacles

Open Access
|Mar 2020

References

  1. 1. Aldanondoa, M., Hadj-Hamou, K., Moynard, G., Lamothe, J. (2003). Mass Customization and Configuration: Requirement Analysis and Constraint Based Modeling Propositions // Integrated Computer-Aided Engineering. Vol. 10, pp. 177–189.
  2. 2. Asllani, A., Long, D. M. (2018). Management Science and Big Data: A Text Mining Meta – Analysis Study // Journal of Management Policy and Practice. Vol. 19, No. 2, pp. 103–115. doi: https://doi.org/10.33423/jmpp.v19i2.128010.33423/jmpp.v19i2.1280
  3. 3. Baesens, B., Bapna, R., Marsden, J. M., Vanthienen, J., Leon Zhao, J. (2016). Transformational Issues of Big Data and Analytics in Networked Business // MIS Quarterly. Vol. 40, No. 4, pp. 807–818. doi: 10.25300/MISQ/2016/40:4.0310.25300/MISQ/2016/40:4.03
  4. 4. Boyd, D., Crawford, K. (2012). Critical Questions for Big Data: Provocations for a Cultural, Technological, and Scholarly Phenomenon, Information // Communication & Society. Vol. 15, No. 5, pp. 662–679.
  5. 5. Chen, D. Q., Preston, D. S., Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management // Journal of Management Information Systems, Vol. 32, No. 4, pp. 4–14. doi: 10.1080/07421222.2015.113836410.1080/07421222.2015.1138364
  6. 6. Diebold, F. X. (2012). A Personal Perspective on the Origin(s) and Development of “Big Data”: The Phenomenon, the Term, and the Discipline, Second Version // PIER Working Paper. Vol. 13, No. 003, pp. 1–4. doi: 10.2139/ssrn.220284310.2139/ssrn.2202843
  7. 7. George, G., Haas, M. R., Pentland, A. (2014). Big Data and Management // Academy of Management Journal. Vol. 57, No. 2, pp. 321–326. doi: 10.5465/amj.2014.400210.5465/amj.2014.4002
  8. 8. Gillespie, B., Otto, C., Young, C. (2018). Bridging the Academic-Practice Gap Through Big Data Research // International Journal of Market Research. Vol. 60, No. 1, pp. 11–13. doi: 10.1177/147078531774467010.1177/1470785317744670
  9. 9. Grable, J. E., Lyons, A. C. (2018). An Introduction to Big Data // Journal of Financial Service Professionals. Vol. 72, No. 5, pp. 17–20.
  10. 10. Grover, P., Kar, A. K. (2017). Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature // Global Journal of Flexible Systems Management. Vol. 18, No. 3, pp. 203–208. doi: 10.1007/s40171-017-0159-310.1007/s40171-017-0159-3
  11. 11. Hofman, E. (2017). Big Data and Supply Chain Decisions: The Impact of Volume, Variety and Velocity Properties on the Bullwhip Effect // International Journal of Production Research. Vol. 55, No. 17, pp. 5108–5126. doi: 10.1080/00207543.2015.106122210.1080/00207543.2015.1061222
  12. 12. Kaplan, A. M., Haenlein, M. (2006). Toward a Parsimonious Definition of Traditional and Electronic Mass Customization // The Journal of Product Innovation Management. Vol. 23, pp. 168–182.
  13. 13. Krishna, D. (2016). Big Data in Risk Management // Journal of Risk Management in Financial Institutions. Vol. 9, No. 1, pp. 46–51.
  14. 14. Lambrou, M. A. (2016). Innovation Capability, Knowledge Management and Big Data Technology: A Maritime Business Case // International Journal of Advanced Corporate Learning. Vol. 9, No. 2, pp. 40–43. doi: 10.3991/ijac.v9i2.601010.3991/ijac.v9i2.6010
  15. 15. McKay, E., Mohamad, M. B. (2018). Big Data Management Skills: Accurate Measurement // Research & Practice in Technology Enhanced Learning. Vol. 13, No. 5, pp. 1–3. doi: 10.1186/s41039-018-0071-210.1186/s41039-018-0071-2
  16. 16. Moon, H., Lee, H-H. (2015). The Effect of Intangibility on the Perceived Risk of Online Mass Customization: Utilitarian and Hedonic Perspectives // Social Behavior and Personality. Vol. 43, No. 3, pp. 457–466. doi: 10.2224/sbp.2015.43.3.45710.2224/sbp.2015.43.3.457
  17. 17. Ogrean, C. (2018). Relevance of Big Data for Business and Management. Exploratory Insights (Part I) // Studies in Business and Economics. Vol. 13, No. 2, pp. 153–161. doi: 10.2478/sbe-2018-002710.2478/sbe-2018-0027
  18. 18. Orenga-Roglá, S., Chalmeta, R. (2019). Framework for Implementing a Big Data Ecosystem in Organizations. // Communications of the ACM. Vol. 62, No. 1, pp. 58–65. doi: 10.1145/321075210.1145/3210752
  19. 19. Park, M., Yoo, J. (2016). E-mass Customization: Effects of Self-congruity and Functional Congruity on Consumer Responses // Social Behavior and Personality. Vol. 44, No. 8, pp. 1379–1394. doi: https://doi.org/10.1111/jpr.1208410.1111/jpr.12084
  20. 20. Politaitė, S., Sabaitytė, J. (2018). Didžiųjų duomenų naudojimas klientui pažinti // Science – Future of Lithuania. Vol. 10, pp. 1–10. doi: https://doi.org/10.3846/mla.2018.93210.3846/mla.2018.932
  21. 21. Prince, C. (2017). Big Data and Privacy: Why Public Organizations Adopt Big Data // The Canadian Journal of Information and Library Science. Vol. 41, No. 4, pp. 233–240.
  22. 22. Risdiyono, R., Widodo, I. D., Mahtarami, A. (2016). Mass Customization and Personalization Prospects in Developing Country: Indonesian Context // IOP Conference Series: Materials Science and Engineering. Vol. 105, pp. 1–5. doi: 10.1088/1757-899X/105/1/01204610.1088/1757-899X/105/1/012046
  23. 23. Skačkauskienė, I., Davidavičius, S. (2015). Masinio individualizavimo koncepto ypatumai // Business: Theory and Practice. Vol. 16, No. 2, pp. 132–139.
  24. 24. Sun, Z. (2018). 10 Bigs: Big Data and Its Ten Big Characteristics // BAIS No. 17010, pp. 1-7. doi: 10.13140/RG.2.2.31449.62566
  25. 25. Welborn, C. (2009). Customization Index: Evaluating the Flexibility of Operations in a Mass Customization Environment // ICFAI Journal of Operations Management, Vol. 8, pp. 6–11.
DOI: https://doi.org/10.1515/mosr-2019-0009 | Journal eISSN: 2335-8750 | Journal ISSN: 1392-1142
Language: English
Page range: 1 - 11
Submitted on: May 25, 2019
|
Accepted on: Dec 10, 2019
|
Published on: Mar 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Gedas Baranauskas, published by Vytautas Magnus University, Faculty of Economics and Management
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.