3. Asano, M., Umeda, K., and Tasaki, A. (1990). Cu3N thin film for a new light recording media. Jpn. J. Appl. Phys. 29, 1985–1986. DOI: 10.1143/JJAP.29.1985.10.1143/JJAP.29.1985
4. Maruyama, T., and Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Appl. Phys. Lett. 69, 890–891. DOI: 10.1063/1.117978.10.1063/1.117978
5. Borsa, D.M., Grachev, S., Presura, C., and Boerma, D.O. (2002). Growth and properties of Cu3N films and Cu3N/γ’-Fe4N bilayers. Appl. Phys. Lett. 80, 1823–1825. DOI: 10.1063/1.1459116.10.1063/1.1459116
6. Wu, H., and Chen, W. (2011). Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 133, 15236–15239. DOI: 10.1021/ja204748u.10.1021/ja204748u
7. Maya, L. (1993). Deposition of crystalline binary nitride films of tin, copper, and nickel by reactive sputtering. J. Vac. Sci. Technol. A 11, 604–608. DOI: 10.1116/1.578778.10.1116/1.578778
9. Zakutayev, A., Caskey, Ch.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Tea, E., and Lany, S. (2014). Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125. DOI: 10.1021/jz5001787.10.1021/jz5001787
10. Caskey, Ch. M., Richards, R.M., Ginleya, D.S., and Zakutayev, A. (2014). Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430. DOI: 10.1039/c4mh00049h.10.1039/C4MH00049H
12. Maruyama, T., and Morishita, T. (1995). Copper nitride thin films prepared by radio-frequency reactive sputtering. J. Appl. Phys. 78, 4104–4107. DOI: 10.1063/1.359868.10.1063/1.359868
13. Hahn, U., and Weber, W. (1996). Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu(I) compounds. Phys. Rev. B 53, 12684. DOI: 10.1103/PhysRevB.53.12684.10.1103/PhysRevB.53.12684
17. Wosylus, A., Schwarz, U., Akselrud, L., Tucker, M.G., Hanfland, M., Rabia, K., Kuntscher, C., von Appen, J., Dronskowski, R., Rau, D., and Niewa, R. (2009). High-pressure phase transition and properties of Cu3N: An experimental and theoretical study. Z. Anorg. Allg. Chem. 635, 1959–1968. DOI: 10.1002/zaac.200900369.10.1002/zaac.200900369
18. Rickers, K., Drube, W., Schulte-Schrepping, H., Welter, E., Brüggmann, U., Herrmann, M., Heuer, J., and Schulz-Ritter, H. (2007). New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB. AIP Conf. Proc. 882, 905–907. DOI: 10.1063/1.264470010.1063/1.2644700
20. Aksenov, V.L., Kuzmin, A. Yu., Purans, J., and Tyutyunnikov, S.I. (2006). Development of Methods of EXAFS Spectroscopy on Synchrotron Radiation Beams: Review. Crystallogr. Rep. 51, 908–935. DOI: 10.1134/S1063774506060022.10.1134/S1063774506060022
24. Xiao, J., Li, Y., and Jiang, A. (2011). Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. J. Mater. Sci. Technol. 27, 403–407. DOI: 10.1016/S1005-0302(11)60082-0.10.1016/S1005-0302(11)60082-0
26. Kuzmin, A., and Purans, J. (1993). A new fast spherical approximation for calculation of multiple scattering contribution in the X-ray absorption fine structure and its application to ReO3, NaWO3 and MoO3. J. Phys.: Condensed Matter 5, 267–282. DOI: 10.1088/0953-8984/5/3/004.10.1088/0953-8984/5/3/004
27. Anspoks, A., Kalinko, A., Kalendarev, R., and Kuzmin, A. (2012). Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies. Phys. Rev. B 86, 174114, 1–11. DOI: 10.1103/PhysRevB.86.174114.10.1103/PhysRevB.86.174114