Have a personal or library account? Click to login
Study of Copper Nitride Thin Film Structure Cover

References

  1. 1. Zachwieja, U., and Jacobs, H. (1990). Ammonothermalsynthese von kupfernitrid, Cu3N. J. Less Common Metals 161, 175–184. DOI: 10.1016/0022-5088(90)90327-G.10.1016/0022-5088(90)90327-G
  2. 2. Paniconi, G., Stoeva, Z., Doberstein, H., Smith, R. I., Gallagher, B. L., and Gregory, D.H. (2007). Structural chemistry of Cu3N powders obtained by ammonolysis reactions. Solid State Sci. 9, 907–913. DOI: 10.1016/j.solidstatesciences.2007.03.017.10.1016/j.solidstatesciences.2007.03.017
  3. 3. Asano, M., Umeda, K., and Tasaki, A. (1990). Cu3N thin film for a new light recording media. Jpn. J. Appl. Phys. 29, 1985–1986. DOI: 10.1143/JJAP.29.1985.10.1143/JJAP.29.1985
  4. 4. Maruyama, T., and Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Appl. Phys. Lett. 69, 890–891. DOI: 10.1063/1.117978.10.1063/1.117978
  5. 5. Borsa, D.M., Grachev, S., Presura, C., and Boerma, D.O. (2002). Growth and properties of Cu3N films and Cu3N/γ’-Fe4N bilayers. Appl. Phys. Lett. 80, 1823–1825. DOI: 10.1063/1.1459116.10.1063/1.1459116
  6. 6. Wu, H., and Chen, W. (2011). Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 133, 15236–15239. DOI: 10.1021/ja204748u.10.1021/ja204748u
  7. 7. Maya, L. (1993). Deposition of crystalline binary nitride films of tin, copper, and nickel by reactive sputtering. J. Vac. Sci. Technol. A 11, 604–608. DOI: 10.1116/1.578778.10.1116/1.578778
  8. 8. Borsa, D.M., and Boerma, D.O. (2004). Growth, structural and optical properties of Cu3N films. Surf. Sci. 548, 95–105. DOI: 10.1016/j.susc.2003.10.053.10.1016/j.susc.2003.10.053
  9. 9. Zakutayev, A., Caskey, Ch.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Tea, E., and Lany, S. (2014). Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125. DOI: 10.1021/jz5001787.10.1021/jz5001787
  10. 10. Caskey, Ch. M., Richards, R.M., Ginleya, D.S., and Zakutayev, A. (2014). Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430. DOI: 10.1039/c4mh00049h.10.1039/C4MH00049H
  11. 11. Pierson, J.F. (2002). Structure and properties of copper nitride films formed by reactive magnetron sputtering. Vacuum 66, 59–64. DOI: 10.1016/S0042-207X(01)00425-0.10.1016/S0042-207X(01)00425-0
  12. 12. Maruyama, T., and Morishita, T. (1995). Copper nitride thin films prepared by radio-frequency reactive sputtering. J. Appl. Phys. 78, 4104–4107. DOI: 10.1063/1.359868.10.1063/1.359868
  13. 13. Hahn, U., and Weber, W. (1996). Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu(I) compounds. Phys. Rev. B 53, 12684. DOI: 10.1103/PhysRevB.53.12684.10.1103/PhysRevB.53.12684
  14. 14. Moreno-Armenta, M.G., Martínez-Ruiz, A., and Takeuchi, N. (2004). Ab initio total energy calculations of copper nitride: The effect of lattice parameters and Cu content in the electronic properties. Solid State Sci. 6, 9–14. DOI: 10.1016/j.solidstatesciences.2003.10.014.10.1016/j.solidstatesciences.2003.10.014
  15. 15. Hou, Z.F. (2008). Effects of Cu, N, and Li intercalation on the structural stability and electronic structure of cubic Cu3N. Solid State Sci. 10, 1651–1657. DOI: 10.1016/j.solidstatesciences.2008.02.013.10.1016/j.solidstatesciences.2008.02.013
  16. 16. Zhao, J.G., Yang, L.X., and Yu, Y., (2006). Pressure-induced metallization and structural evolution of Cu3N. Phys. Stat. Sol. (b) 243, 573–578. DOI: 10.1002/pssb.200541280.10.1002/pssb.200541280
  17. 17. Wosylus, A., Schwarz, U., Akselrud, L., Tucker, M.G., Hanfland, M., Rabia, K., Kuntscher, C., von Appen, J., Dronskowski, R., Rau, D., and Niewa, R. (2009). High-pressure phase transition and properties of Cu3N: An experimental and theoretical study. Z. Anorg. Allg. Chem. 635, 1959–1968. DOI: 10.1002/zaac.200900369.10.1002/zaac.200900369
  18. 18. Rickers, K., Drube, W., Schulte-Schrepping, H., Welter, E., Brüggmann, U., Herrmann, M., Heuer, J., and Schulz-Ritter, H. (2007). New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB. AIP Conf. Proc. 882, 905–907. DOI: 10.1063/1.264470010.1063/1.2644700
  19. 19. Kuzmin, A. (1995). EDA: EXAFS data analysis software package. Physica B 208-209, 175–176. DOI: 10.1016/0921-4526(94)00663-G.10.1016/0921-4526(94)00663-G
  20. 20. Aksenov, V.L., Kuzmin, A. Yu., Purans, J., and Tyutyunnikov, S.I. (2006). Development of Methods of EXAFS Spectroscopy on Synchrotron Radiation Beams: Review. Crystallogr. Rep. 51, 908–935. DOI: 10.1134/S1063774506060022.10.1134/S1063774506060022
  21. 21. Kuzmin, A., and Chaboy, J. (2014). EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 1, 571–589. DOI: 10.1107/S2052252514021101.10.1107/S2052252514021101
  22. 22. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576. DOI: 10.1103/PhysRevB.58.7565.10.1103/PhysRevB.58.7565
  23. 23. Rehr, J.J., and Albers, R.C. (2000). Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654. DOI: 10.1103/RevModPhys.72.621.10.1103/RevModPhys.72.621
  24. 24. Xiao, J., Li, Y., and Jiang, A. (2011). Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. J. Mater. Sci. Technol. 27, 403–407. DOI: 10.1016/S1005-0302(11)60082-0.10.1016/S1005-0302(11)60082-0
  25. 25. Yue, G.H., Yana, P.X., and Wang, J. (2005). Study on the preparation and properties of copper nitride thin films. J. Crystal Growth 274, 464–468. DOI: 10.1016/j.jcrysgro.2004.10.032.10.1016/j.jcrysgro.2004.10.032
  26. 26. Kuzmin, A., and Purans, J. (1993). A new fast spherical approximation for calculation of multiple scattering contribution in the X-ray absorption fine structure and its application to ReO3, NaWO3 and MoO3. J. Phys.: Condensed Matter 5, 267–282. DOI: 10.1088/0953-8984/5/3/004.10.1088/0953-8984/5/3/004
  27. 27. Anspoks, A., Kalinko, A., Kalendarev, R., and Kuzmin, A. (2012). Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies. Phys. Rev. B 86, 174114, 1–11. DOI: 10.1103/PhysRevB.86.174114.10.1103/PhysRevB.86.174114
DOI: https://doi.org/10.1515/lpts-2016-0011 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 31 - 37
Published on: May 20, 2016
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2016 A. Kuzmin, A. Kalinko, A. Anspoks, J. Timoshenko, R. Kalendarev, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.