Albert, M.B., Avery, D., Narin, F., & McAllister, P. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20(3), 251–259.
Alcácer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in U.S. patents: An overview and analysis. Research Policy, 38(2), 415–427.
Appio, F.P., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: A document co-citation analysis. Scientometrics, 101(1), 623–661.
Arts, S., Appio, F., & van Looy, B. (2012). Validating patent indicators that assess technological radicalness: The case of biotechnology. In E. Archambault, Y. Gingras, & V. Larivière (Eds.), Proceedings of 17th International Conference on Science and Technology Indicators (Vol. 1, pp. 82–97). Montréal: Science-Metrix and OST.
Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of inventors and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.
Breitzman, A., & Thomas, P. (2015). The emerging clusters model: A tool for identifying emerging technologies across multiple patent systems. Research Policy, 44(1), 195–205.
Bruck, P., Rethy, I., Szente, J., Tobochnik, J., & Erdi, P. (2016). Recognition of emerging technology trends: Class-selective study of citations in the US Patent Citation Network. Scientometrics, 107(3), 1465–1475.
Callaert, J., van Looy, B., Verbeek, A., Debackere, K., & Thijs, B. (2006). Traces of prior art: An analysis of non-patent references found in patent documents. Scientometrics, 69(1), 3–20.
Callaert, J., Grouwels, J., & van Looy, B. (2012). Delineating the scientific footprint in technology: Identifying science within non-patent references. Scientometrics, 91(2), 383–398.
Callaert, J., Pellens, M., & van Looy, B. (2014). Sources of inspiration? Making sense of scientific references in patents. Scientometrics, 98(3), 1617–1629.
Callaert, J., Vervenne, J.B., van Looy, B., Magerman, T., Song, X., & Jeuris, W. (2014). Patterns of science-technology linkage. European Commission. Retrieved on November 29, 2016, from http://ec.europa.eu/research/innovation-union/pdf/patterns_of_science-technology_linkage.pdf.
Carpenter, M.P., & Narin, F. (1983). Validation study: Patent citations as indicators of science and foreign dependence. World Patent Information, 5(3), 180–185.
Cho, Y., & Kim, M. (2014). Entropy and gravity concepts as new methodological indexes to investigate technological convergence: Patent network-based approach. PLoS ONE, 9(6), e98009.
Chowdhury, G., Koya, K., & Philipson, P. (2016). Measuring the impact of research: Lessons from the UK’s research excellence framework 2014. PLoS ONE, 11(6), e0156978.
Coward, H.R., & Franklin, J.J. (1989). Identifying the science-technology interface: Matching patent data to a bibliometric model. Science, Technology and Human Values, 14(1), 50–77.
Criscuolo, P, & Verspagen, B. (2008). Does it matter where patent citations come from? Inventor vs. examiner citations in European patents. Research Policy, 37(10), 1892–1908.
Engelsman, E.C., & van Raan, A.F.J. (1991). Mapping of technology. A first exploration of knowledge diffusion amongst fields of technology. Policy Studies on Technology and Economy (BTE) Series. The Hague: Netherlands Ministry of Economic Affairs.
European Commission. (2005). Study on evaluating the knowledge economy – What are patents actually worth? The value of patents for today’s economy and society (PATVAL study). Retrieved on November 29, 2016, from http://ec.europa.eu/internal_market/indprop/docs/patent/studies/patentstudy-report_en.pdf.
Finardi, U. (2011). Time relations between scientific production and patenting of knowledge: The case of nanotechnologies. Scientometrics, 89(1), 37–50.
Fukuzawa, N., & Ida, T. (2016). Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: The case of Japan. Scientometrics, 106(2), 629–644.
Grant, J., Green, L., & Mason, B. (2003). Basic research and health: A reassessment of the scientific basis for the support of biomedical science. Research Evaluation, 12(3), 217–224.
Guerzoni, M., Aldridge, T.T., Audretsch, D.B., & Desai, S. (2014). A new industry creation and originality: Insight from the funding sources of university patents. Research Policy, 43(10), 1697–1706.
Halevi, G., & Moed, H.F. (2012). The technological impact of library science research: A patent analysis. In E. Archambault, Y. Gingras, & V. Larivière (Eds.), Proceedings of 17th International Conference on Science and Technology Indicators (Vol.1, pp. 371–380), Montréal: Science-Metrix and OST.
Harhoff, D., Narin, F., Scherer, M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), 511–515.
Hazuda, D.J., Felock, P., Witmer, M., Wolfe, A., Stillmock, K., Grobler, J.A., Espeseth, A., Gabryelski, L., Schleif, W., Blau, C., & Miller, M.D. (2000). Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 287(5453), 646–650.
Heilbron, J.L. (1972). Illinois Institute of Technology Research Institute - Technology in retrospect and critical events in science. Isis, 63(1), 115.
Ho, M.H.C., Lin, V.H., & Liu, J.S. (2014). Exploring knowledge diffusion among nations: A study of core technologies in fuel cells. Scientometrics, 100(1), 149–171.
Hu, D., Chen, H., Huang, Z., & Roco, M.C. (2007). Longitudinal study on patent citation to academic research articles in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(9), 529–542.
Illinois Institute of Technology (IIT). (1968). Technology in retrospect and critical events in science. Vol. 1. Chicago, Illinois: Illinois Institute of Technology Research Institute.
Illinois Institute of Technology (IIT). (1969). Technology in retrospect and critical events in science. Vol. 2. Chicago, Illinois: Illinois Institute of Technology Research Institute.
Kim, B., Gazzola, G., Lee, J.M., Kim, D., Kim, K., & Jeong, M.K. (2014). Inter-cluster connectivity analysis for technology opportunity discovery. Scientometrics, 98(3), 1811–1825.
Kim, E., Cho, Y., & Kim, W. (2014). Dynamic patterns of technological convergence in printed electronics technologies: Patent citation network. Scientometrics, 98(2), 975–998.
Ko, S.S., Ko, N, Kim, D., Park, H., & Yoon, J. (2014). Analyzing technology impact networks for R&D planning using patents: Combined application of network approaches. Scientometrics, 101(1), 917–936.
Leten, B., Landoni, P., & van Looy, B. (2014). Science or graduates: How do firms benefit from the proximity of universities? Research Policy, 43(8), 1398–1412.
Leydesdorff, L., & Rafols, I. (2011). Local emergence and global diffusion of research technologies: An exploration of patterns of network formation. Journal of the American Society for Information Science and Technology, 62(5), 846–860.
Lo, S.S. (2010). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120.
Magerman, T., van Looy, B., & Song, X. (2010). Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications. Scientometrics, 82(2), 289–306.
Magerman, T., van Looy, B., & Debackere, K. (2015). Does involvement in patenting jeopardize one’s academic footprint? An analysis of patent-paper pairs in biotechnology. Research Policy, 44(9), 1702–1713.
Mehta, A., Rysman, M., & Simcoe, T. (2010). Identifying the age profile of patent citations: New estimates of knowledge diffusion. Journal of Applied Econometrics, 25(7), 1179–1204.
Meyer, M. (2000). Patent citations in a novel field of technology: What can they tell about interactions between emerging communities of science and technology. Scientometrics, 48(2), 151–178.
Meyer, M. (2001). Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology. Scientometrics, 51(1), 163–183.
Meyer, M. (2005). Inventor-authors: Knowledge integrators or weak links? An exploratory comparison of co-active researchers with their non-inventing peers in nano-science and technology. Working Paper No 2005/1, Helsinki University of Technology.
Morescalchi, A., Pammolli, F., Penner, O., Petersen, A.M., & Riccaboni, M. (2015). The evolution of networks of innovators within and across borders: Evidence from patent data. Research Policy, 44(3), 651–668.
Nakamura, H., Suzuki, S., Kajikawa, Y., & Osawa, M. (2015). The effect of patent family information in patent citation network analysis: A comparative case study in the drivetrain domain. Scientometrics, 104(2), 437–452.
Narin, F., Rosen, M., & Olivastro, D. (1989). Patent citation analysis: New validation studies and linkage statistics. In A.F.J. van Raan, A.J. Nederhoff, & H.F. Moed (Eds.), Science and Technology Indicators: Their Use in Science Policy and their Role in Science Studies. Leiden: DSWO Press.
Noyons, E.C.M., & van Raan, A.F.J. (1994). Bibliometric cartography of scientific and technological developments of an R&D field. The case of optomechatronics. Scientometrics, 30(1), 157–173.
Noyons, E.C.M., van Raan, A.F.J., Grupp, H., & Schmoch, U. (1994). Exploring the science and technology interface: Inventor-author relations in laser medicine research. Research Policy, 23(4), 443–457.
Noyons, E.C.M., Buter, R.K., van Raan, A.F.J., Schmoch, U., Heinze, T., Hinze, S., & Rangnow, R. (2003). Mapping excellence in science and technology across Europe: Nanoscience and nanotechnology. Report of project EC-PPN CT-2002-0001 to the European Commission. Leiden: Centre for Science and Technology Studies (CWTS), Leiden University.
Packer, A., & Webster, K. (1996). Patenting culture in science: Reinventing the scientific wheel of credibility. Science, Technology and Human Values, 21(4), 427–453.
Park, H., & Yoon, J. (2014). Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: The case of Korean national R&D. Scientometrics, 98(2), 853–890.
Perkmann, M., Fini, R., Ross, J.M., Salter, A., Silvestri, C., & Tartari, V. (2015). Accounting for universities’ impact: Using augmented data to measure academic engagement and commercialization by academic scientists. Research Evaluation, 24(4), 380–391.
Rodriguez, A., Kim, B., Turkoz, M., Lee, J.M., Coh, B.Y., & Jeong, M.K. (2015). New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network. Scientometrics, 103(2), 565–581.
Squicciarini, M., Dernis, H., & Crisculo, C. (2013). Measuring patent quality: Indicators of technological and economic value. OECD Science, Technology and Industry Working Papers, 2013/03, OECD Publishing. Retrieved on November 29, 2016, from 10.1787/5k4522wkw1r8-en">http://dx.doi.org/10.1787/5k4522wkw1r8-en.
Tijssen, R.J.W., Buter, R.K., & van Leeuwen, T.N. (2000). Technological relevance of science: Validation and analysis of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412.
Tijssen, R.J.W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology interactions and knowledge flows. Research Policy, 30(1), 35–54.
Upham, S.P., & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83(1), 15–38.
van Looy, B., Debackere, K., Callaert, J., Tijssen, R., & van Leeuwen, T. (2006). Scientific capabilities and technological performance: An exploration of emerging industrial relevant research domains. Scientometrics, 66(2), 295–310.
van Looy, B., Magerman, T., & Debackere, K. (2007). Developing technology in the vicinity of science: An examination of the relationship between science intensity (of patents) and technological productivity within the field of biotechnology. Scientometrics, 70(2), 441–458.
van Raan, A.F.J. (2016). Sleeping beauties cited in patents: Is there also a dormitory of inventions? To be published, preprint retrieved on November 29, 2016, from https://arxiv.org/abs/1604.05750.
Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.
Wada, T. (2016). Obstacles to prior art searching by the trilateral patent offices: Empirical evidence from International Search Reports. Scientometrics, 107(2), 701–722.
Walter, S.G., Schmidt, A., & Walter, A. (2016). Patenting rationales of academic entrepreneurs in weak and strong organizational regimes. Research Policy, 45(2), 533–545.
Waltman, L., van Raan, A.F.J., & Smart, S. (2014). Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods. PLoS ONE, 9(10), e111530.
Wang, Y., Roijakkers, N., & Vanhaverbeke, W. (2014). How fast do Chinese firms learn and catch up? Evidence from patent citations. Scientometrics, 98(1), 743–761.
Winnink, J.J., Tijssen, R.J.W., & van Raan, A.F.J. (2013). The discovery of introns: Analysis of the science-technology interface. In S. Hinze, & A. Lottmann (Eds.), Translational Twists and Turns: Science as a Socio-economic Endeavor. Proceedings of the 18th International Conference on Science and Technology Indicators (pp. 427–438). Berlin, Institute for Research Information and Quality Assurance (iFQ). Retrieved on November 29, 2016, from http://www.forschungsinfo.de/sti2013/download/sti_2013_proceedings.pdf.
Winnink, J.J., & Tijssen, R.J.W. (2014). R&D dynamics and scientific breakthroughs in HIV/AIDS drugs development: The case of integrase inhibitors. Scientometrics, 101(1), 1–16.
Winnink, J.J., & Tijssen, R.J.W. (2015). Early stage identification of breakthroughs at the interface of science and technology: Lessons drawn from a landmark publication. Scientometrics, 102(1), 113–114.
Zarrin, H., Higgins, D., Jun, Y., Chen, Z.W., & Fowler, M. (2011). Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. Journal of Physical Chemistry C, 115(42), 20774–20781.