Have a personal or library account? Click to login
Gain Design of Quasi-Continuous Exponential Stabilizing Controller for a Nonholonomic Mobile Robot Cover

Gain Design of Quasi-Continuous Exponential Stabilizing Controller for a Nonholonomic Mobile Robot

Open Access
|Jun 2016

References

  1. [1] T.-C. Lee, Exponential stabilization for nonlinear systems with applications to nonholonomic systems, Automatica, vol. 39, no. 6, pp. 1045-1051, 2003.
  2. [2] A. Bloch, S. Drakunov, Stabilization and tracking in the nonholonomic integrator via sliding modes, Systems and Control Letters, vol. 29, no. 2, pp. 91-99, 1996.10.1016/S0167-6911(96)00049-7
  3. [3] G. Escobar, M. Reyhanglu, Regulation and tracking of the nonholonomic double integrator: A fieldoriented control approach, Automatica, vol. 34, no. 1, pp. 125-131, 1998.10.1016/S0005-1098(97)00155-6
  4. [4] R. W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, pp. 181-191, 1983.
  5. [5] J. Luo, P. Tsiotras, Control design for chained-form systems with bounded inputs, System and Control Letters, vol. 39, no. 2, pp. 123-131, 2000.10.1016/S0167-6911(99)00097-3
  6. [6] Z. Sun, S.S. Ge, W. Huo, T.H. Lee, Stabilization of nonholonomic chained systems via nonregular feedback linearization, System and Control Letters, vol. 44, no. 4, pp. 279-289, 2001.10.1016/S0167-6911(01)00148-7
  7. [7] N. Marchand, M. Alamir, Discontinuous exponential stabilization of chained form systems, Automatica, vol. 39, no. 2, pp. 343-348, 2003.10.1016/S0005-1098(02)00229-7
  8. [8] K. Cao, Global -exponential tracking control of nonholonomic systems in chained-form by output feedback, Acta Automatica Sinica, vol. 35, no. 5, pp. 568-576, 2009.10.1016/S1874-1029(08)60087-7
  9. [9] O. J. Sordalen, O. Egeland, Exponential stabilization of nonholonomic chained systems, IEEE Trans. on Automatica Control, vol. 40, no. 1, pp. 35-49, 1995.10.1109/9.362901
  10. [10] A. Astolfi, Discontinuous control of nonholonomic systems, Systems and Control Letters, vol. 27, no. 1, pp. 37-45, 1996.10.1016/0167-6911(95)00041-0
  11. [11] A. Astolfi, Discontinuous control of the brockett integrator, Proc. of the 36th IEEE Conference on Decision and Control, vol. 5, pp. 4334-4339, 1997.
  12. [12] J. P. Hespanha, A. S. Morse, Stabilization of nonholonomic integrators via logic-based switching, Automatica, vol. 35, no. 3, pp. 385-393, 1999.10.1016/S0005-1098(98)00166-6
  13. [13] R. N. Banavar, Switched control strategies for underactuated Systems, Manuscripts of Invited talk, ACODS07, 2007.
  14. [14] H. Khennouf and C. Canudas de Wit, On the construction of stabilizing discontinuous controllers for nonholonomic systems, Proc. of IFAC Nonlinear Control Systems Design, pp. 747-752, 1995.10.1016/S1474-6670(17)46905-9
  15. [15] H. Khennouf, C. Canudas de Wit, Quasicontinuous exponential stabilizers for nonholonomic systems, Proc. of IFAC 13th TriennialWorld Congress, pp. 49-54, 1996.
  16. [16] S. Nonaka, T. Tsujimura and K. Izumi: Modified error system of nonholonomic double integrator model using invariant manifold control, Proceedings of SICE Annual Conference 2014, pp. 42-47, 2014.
Language: English
Page range: 189 - 201
Published on: Jun 10, 2016
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Shogo Nonaka, Takeshi Tsujimura, Kiyotaka Izumi, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.