Have a personal or library account? Click to login
The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization Cover

The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization

Open Access
|Dec 2016

References

  1. Ashworth D.J., Shaw G., 2006. A comparison of the soil migration and plant uptake of radioactive chlorine and iodine from contaminated groundwater. J. Environ. Radioact. 89: 61-80.10.1016/j.jenvrad.2006.03.006
  2. Ashworth D.J., Shaw G., Butler A.P., Ciciani L., 2003. Soil transport and plant uptake of radio-iodine from near-surface groundwater. J. Environ. Radioact. 70: 99-114.10.1016/S0265-931X(03)00121-8
  3. Baranska M., Schulz H., Baranski R., Nothnagel T., Christensen L.P., 2005. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J. Agric. Food Chem. 53(17): 6565-6571.10.1021/jf0510440
  4. Baranska M., Baranski R., Schulz H., Nothnagel T., 2006. Tissue-specific accumulation of carotenoids in carrot roots. Planta 224(5): 1028-1037.10.1007/s00425-006-0289-x
  5. Baranski R., Allender C., Klimek-Chodacka M., 2012. Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food Res. Inter. 47(2): 182-187.10.1016/j.foodres.2011.05.006
  6. Barber M.J., Notton B.A., 1990. Spinach nitrate reductase – effects of ionic strength and pH on the full and partial 1. Enzyme activities. Plant Physiol. 93: 537-540.10.1104/pp.93.2.537
  7. Blasco A., Rios J.J., Cervilla L.M., Sanchez-Rodriguez E., Rubio-Wilhelmi M.M., Rosales M.A., et al., 2011a. Iodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativa L.). Acta Agric. Scand. 61(4): 378-383.10.1080/09064710.2010.492782
  8. Blasco B., Rios J.J., Leyva R., Cervilla L.M., Sanchez-Rodriguez E., Rubio-Wilhelmi, et al., 2010. Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res. 142(3): 831-842.10.1007/s12011-010-8816-9
  9. Blasco B., Ríos J.J., Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Leyva R., Romero L., Ruiz J.M., 2012. Study of the interactions between iodine and mineral nutrients in lettuce plants. J. Plant Nut. 35(13): 958-1969.10.1080/01904167.2012.716889
  10. Bogdanov S., 2002. Harmonised methods of the International Honey Commission. Int. Honey Comm.: 1-62.
  11. Cebulak T., Sady W., 2000. Effect of cultivation methods on nutritive compounds in the carrot. Folia Hort. 12(1): 77-84.
  12. Dai J.L., Zhu Y.G., Zhang M., Huang Y.Z., 2004. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res. 101: 265-276.10.1385/BTER:101:3:265
  13. Eticha D., Zahn M., Bremer M., Yang Z., Rangel A.F., Rao I.M., Horst W.J., 2010. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann. Bot. 105(7): 1119-1128.10.1093/aob/mcq049288706920237115
  14. Fakumoto L., Mazza G., 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48(8): 3597-3604.10.1021/jf000220w10956156
  15. Gajewski M., Szymczak P., Bajer M., 2009a. The accumulation of chemical compounds in storage roots by carrots of different cultivars during vegetation period. Acta Sci. Pol., Hortorum Cultus 8(4): 69-78.
  16. Gajewski M., Węglarz Z., Wereda A., Bajer M., Kuczkowska A., Majewski M., 2010. Carotenoid accumulation by carrot storage roots in relation to nitrogen fertilization level. Not. Bot. Hort. Agrobot. Cluj 38(1): 71-75.
  17. Gajewski M., Szymczak P., Bajer M., Sereda A., 2011. Accumulation of chemical compounds in carrot storage roots under different light conditions. Ann. Warsaw Univ. Life Sci. – SGGW, Horticult. Landsc. Architect. 32: 15-23.
  18. Gajewski M., Węglarz Z., Sereda A., Bajer M., Kuczkowska A., Majewski M., 2009b. Quality of carrots grown for processing as affected by nitrogen fertilization and harvest term. Veg. Crop. Res. Bull. 70: 135-144.10.2478/v10032-009-0013-z
  19. GUS, 2005. Environment Protection Information and statistical analysis. Cent. Stat. Off. Pol. Wars. (in Polish).
  20. Hawrylak-Nowak B., Matraszek R., Pogorzelec M., 2015. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant. 37: 41-54.10.1007/s11738-015-1788-9
  21. Hung C.C., Wong G.T.F., Dunstan W.M., 2005. Iodate reduction activity in nitrate reductase extracts from marine phytoplankton. Bull. Mar. Sci. 76(1): 61-72.
  22. Jaworska G., Kmiecik W., 1999. Content of selected mineral compounds, nitrates III and V, and oxalates in spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia expansa Murr.) from spring and autumn growing seasons. EJPAU 2(2). Available online at http://www.ejpau.media.pl/volume2/issue2/food/art-03.html.
  23. Kabata-Pendias A., 2011. Trace elements in soil and plants. Fourth Edition CRC Press, Taylor and Francis Gr.10.1201/b10158
  24. Kato S., Wachi T., Yoshihira K., Nakagawa T., Ishikawa A., Takagi D., et al., 2013. Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. 4:227, http://dx.doi.org/10.3389/fpls.2013.00227.10.3389/fpls.2013.00227370674123847633
  25. Kopsell D.A., Kopsell D.E., 2007. Selenium. In: Handbook of Plant Nutrition. A.V. Barker and D.J Pilbeam (eds), CRC Press Taylor & Francis Gr.10.1201/9781420014877.ch18
  26. Korkina L.G., 2007. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol. 53(1): 15-25.
  27. Koyama H., Takita E., Kawamura A., Hara T., Shibata D., 1999. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Phys. 40(5): 482-488.10.1093/oxfordjournals.pcp.a02956810427772
  28. Lawson P.G., Daum D., Czauderna R., Meuser H., Härtling J.W., 2015. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 6:450, doi: 10.3389/fpls.2015.00450.10.3389/fpls.2015.00450447726426157445
  29. Longchamp M., Castrec-Rouelle M., Biron P., Bariac T., 2015. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem. 182: 128-135.10.1016/j.foodchem.2015.02.13725842318
  30. Mao H., Wang J., Wang Z., Zan Y., Lyons G., Zou C., 2014. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nut. 14 (2): 459-470.10.4067/S0718-95162014005000036
  31. Michalak A., 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15(4): 523-530.
  32. Nabrzyski M., Gajewska R., 1993. The content of nitrates and nitrites in fruits, vegetables and other foodstuffs. Roczniki PZH 45(3): 167-180.
  33. Ohno T., Koyama H., Hara T., 2003. Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiol. 44(2): 156-162.10.1093/pcp/pcg02512610218
  34. Pekkarinen S., Stockmann H., Schwarz K., Heinnonen M., Hopia A., 1999. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 47(8): 3036-3043.10.1021/jf981323610552604
  35. Przybysz A., Wrochna M., Małecka-Przybysz M., Gawrońska H., Gawroński S.W., 2016. The effects of Mg enrichment of vegetable sprouts on Mg concentration, yield and ROS generation. J. Sci. Food Agric. 96: 3469-3476.10.1002/jsfa.753026564475
  36. Quilitzsch R., Baranska M., Schulz H., Hoberg E., 2005. Fast determination of carrot quality by spectroscopy methods in the UV-VIS, NIR and IR range. J. Appl. Bot. Food Qual. 79(3): 163.
  37. Rhew R.C., Østergaard L., Saltzman E.S., Yanofsky M.F., 2003. Genetic control of methyl halide production in Arabidopsis. Curr. Biol. 13: 1809-1813.10.1016/j.cub.2003.09.05514561407
  38. Ríos J.J., Rosales M.A., Blasco B., Cervilla L.M., Romero L., Ruiz J.M., 2008. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hort. 116: 248-255.10.1016/j.scienta.2008.01.008
  39. Ríos J.J., Blasco B., Cervilla L.M., Rubio-Wilhelmi M.M., Rosales M.A., Sánchez-Rodríguez, et. al., 2010. Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Grow. Reg. 29: 164-170.10.1007/s00344-009-9130-7
  40. Rosenfeld H.J., Samuelsen R.T., Lea P., 1998a. Relationship between physical and chemical characteristic of carrots grown at northern latitudes. J. Hort. Sci. Biotech. 73(2): 265-273.10.1080/14620316.1998.11510974
  41. Rosenfeld H.J., Samuelsen R.T., Lea P., 1998b. The effect of temperature on sensory quality, chemical composition and growth of carrots (Daucus carota L.) I. Constant diurnal temperature. J. Hort. Sci. Biotech. 73(2): 275-288.10.1080/14620316.1998.11510975
  42. Rosenfeld H.J., Samuelsen R.T., Lea P., 1998c. The effect of temperature on sensory quality, chemical composition and growth of carrots (Daucus carota L.) II. Constant diurnal temperatures under seasonal light regimes. J. Hort. Sci. Biotech. 73(5): 578-588.10.1080/14620316.1998.11511018
  43. Rożek S., Leja M., Wojciechowska R., 2000. Effect of differentiated nitrogen fertilization on changes of certain compounds in stored carrot roots. Folia Hort. 12(2): 21-34.
  44. Sady W., Cebulak T., 2000. The effect of irrigation and cultivation methods on some mineral compounds in storage roots of the carrot. Folia Hort. 12(2): 35-41.
  45. Smoleń S., Rożek S., Strzetelski P., Ledwożyw I., 2011a. Preliminary evaluation of the influence of soil fertilization and foliar nutrition with iodine on the effectiveness of iodine biofortification and mineral composition of carrot. J. Element. 16(1): 103-114.10.5601/jelem.2011.16.2.11
  46. Smoleń S., Sady W., Rożek S., Ledwożyw I., Strzetelski P., 2011b. Preliminary evaluation of the influence of iodine and nitrogen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. J. Element. 16(2): 275-285.10.5601/jelem.2011.16.2.11
  47. Smoleń S., Kowalska I., Sady W., 2014a. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hort. 166: 9-16.10.1016/j.scienta.2013.11.011
  48. Smoleń S., Sady W., Ledwożyw-Smoleń I., Strzetelski P., Liszka-Skoczylas M., Rożek S., 2014b. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 159: 316-322.10.1016/j.foodchem.2014.03.02424767061
  49. Smoleń S., Sady W., Strzetelski P., Rożek S., Ledwożyw I., 2009. The effect of iodine and nitrogen fertilization on quantity and quality of carrot yield well as on biological quality carrot. Envir. Prot. Nat. Resourc. 40: 286-292 (in Polish with English abstract).
  50. Smoleń S., Skoczylas Ł., Rakoczy R., Ledwożyw-Smoleń I., Liszka-Skoczylas M., Kopeć A., et al., 2015. Selected aspects of nitrogen metabolism and quality of field-grown lettuce (Lactuca sativa L.) depending on the diversified fertilization with iodine and selenium compounds. Acta Sci. Pol., Hortorum Cultus 14(5): 159-175.
  51. Smoleń S., Skoczylas Ł., Ledwożyw-Smoleń I., Rakoczy R., Kopeć A., Piątkowska E., Bieżanowska-Kopeć R., et al., 2016a. Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant Sci. 7:730. doi: 10.3389/fpls.2016.0073010.3389/fpls.2016.00730488231827303423
  52. Smoleń S., Skoczylas Ł., Ledwożyw-Smoleń I., Rakoczy R., Kopeć A., Piątkowska E., Bieżanowska-Kopeć R., et al., 2016b. Iodine and selenium biofortification of lettuce (Lactuca sativa L.) by soil fertilization with various compounds of these elements. Acta Sci. Pol., Hortorum Cultus 15(5): 69-91.
  53. Suojala T., 2000. Pre- and postharvest development of carrot yield and quality. University Of Helsinki Department of Plant Production. Section of Horticulture. Publication 37. Academic Dissertation.
  54. Szymczak P., Gajewski M., Radzanowska J., Dąbrowska A., 2007. Sensory quality and consumer liking of carrot cultivars of different genotype. Veg. Crops Res. Bull. 67: 163-176.10.2478/v10032-007-0040-6
  55. Tamme T., Reinik M., Roasto M., Juhkam K., Tenno T., Kiis, A., 2006. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam. 23(4): 355-361.10.1080/0265203050048236316546882
  56. White P.J., Broadley M.R., 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182(1): 49-84.10.1111/j.1469-8137.2008.02738.x19192191
  57. Winkel L.H., Vriens B., Jones G.D., Schneider L.S., Pilon-Smits E., Bañuelos G.S., 2015. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutr. 7(6): 4199-4239.10.3390/nu7064199448878126035246
  58. Wińska-Krysiak M., 2006. Calcium transporters in plants. Acta Agrophys. 7(3): 751-762 (in Polish with English abstract).
  59. Yuita K., Kihou N., Yabusaki S., Takahashi Y., Saitoh T., Tsumura A., et al., 2005. Behavior of iodine in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan. Iodine concentration in precipitation, irrigation water, ponding water and soil w Water to a depth of 2.5 m. Soil Sci. Plant Nutr. 51: 1011-1021.10.1111/j.1747-0765.2005.tb00140.x
  60. Zhao Y.Q., Zheng J.P., Yang M.W, Yang G.D, Wu Y.N., Fu F.F., 2011. Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 84: 983-988.10.1016/j.talanta.2011.03.00421482313
  61. Zhu Y.G., Huang Y., Hu Y., Liu Y., Christie P., 2004. Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil 261: 99-105.10.1023/B:PLSO.0000035539.58054.e1
  62. Zhu Y. G., Pilon-Smits E. A., Zhao F. J., Williams P. N., Meharg A.A., 2009. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 14(8): 436-442.10.1016/j.tplants.2009.06.00619665422
DOI: https://doi.org/10.1515/fhort-2016-0018 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 151 - 164
Submitted on: Feb 17, 2016
Accepted on: Jul 6, 2016
Published on: Dec 28, 2016
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Sylwester Smoleń, Łukasz Skoczylas, Iwona Ledwożyw-Smoleń, Roksana Rakoczy, Marta Liszka-Skoczylas, Aneta Kopeć, Ewa Piątkowska, Renata Bieżanowska-Kopeć, Aneta Koronowicz, Joanna Kapusta-Duch, Włodzimierz Sady, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.