Have a personal or library account? Click to login
Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics Cover

Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics

Open Access
|Jul 2017

References

  1. 1. J. Murray, Mathematical Biology: An introduction. Springer-Verlag New York, 2002.
  2. 2. J. Borghans, R. de Boer, and L. Segel, Extending the quasi-steady state approximation by changing variables, Bull.Math.Biol., vol. 58, pp. 43-63, 1996.10.1007/BF02458281
  3. 3. A. Bersani, E. Bersani, G. Dell'Acqua, and M. Pedersen, New trends and perspectives in nonlinear intracellular dynamics: one century from michaelis-menten paper, CMAT, vol. 27, pp. 659-684, 2015.10.1007/s00161-014-0367-4
  4. 4. F. G. Heineken, T. M., and A. R., On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosc., vol. 1, pp. 95-11, 1967.10.1016/0025-5564(67)90029-6
  5. 5. L. A. Segel and M. Slemrod, The quasi steady-state assumption: a case study in pertubation., Siam Rev., vol. 31, pp. 446-477, 1989.10.1137/1031091
  6. 6. G. Dell'Acqua and A. M. Bersani, A perturbation solution of michaelis-menten kinetics in a “total” framework, Journal of Mathematical Chemistry, vol. 50, no. 5, pp. 1136-1148, 2012.
  7. 7. J. Carr, Applications of Center Manifold Theory. Springer-Verlag New York, Heidelberg, Berlin, 1981.
  8. 8. S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Sys- tems, vol. 105. Springer-Verlag New York, 1994.10.1007/978-1-4612-4312-0
  9. 9. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, vol. 2. Springer-Verlag New York, 2003.
  10. 10. A. Tikhonov, On the dependence of the solutions of differential equations on a small parameter, Mat. Sb. (N.S.), vol. 22, no. 2, pp. 193 - 204, 1948.
  11. 11. A. Tikhonov, On a system of differential equations containing parameters, Mat. Sb. (N.S.), vol. 27, pp. 147-156, 1950.
  12. 12. A. Tikhonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sb. (N.S.), vol. 31, no. 3, pp. 575-586, 1952.
  13. 13. W. Wasov, Asymptotic Expansions for Ordinary Differential Equations. Wiley-InterScience, 1965.
  14. 14. I. Dvořák and J. Šiška, Analysis of metabolic systems with complex slow and fast dynamics, Bulletin of Mathematical Biology, vol. 51, no. 2, pp. 255-274, 1989.10.1007/BF02458446
  15. 15. A. Kumar and K. Josić, Reduced models of networks of coupled enzymatic reactions, Journal of Theoretical Biology, vol. 278, no. 1, pp. 87-106, 2011.10.1016/j.jtbi.2011.02.025
  16. 16. A. Bersani, E. Bersani, A. Borri, and P. Vellucci, “Dynamical aspects of the total QSSA in enzyme kinematics.” https://arxiv.org/abs/1702.05351. Submitted to Journal of Mathematical Biology.
  17. 17. B. O. Palsson and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. i. on michaelis-menten kinetics, Journal of Theoretical Biology, vol. 111, no. 2, pp. 273 - 302, 1984.10.1016/S0022-5193(84)80211-8
  18. 18. B. O. Palsson, R. Jamier, and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. ii. simple dimeric enzymes, Journal of Theoretical Biology, vol. 111, no. 2, pp. 303 - 321, 1984.10.1016/S0022-5193(84)80212-X
  19. 19. B. O. Palsson, H. Palsson, and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. iii. linear reaction sequences, Journal of Theoretical Biology, vol. 113, no. 2, pp. 231 - 259, 1985.10.1016/S0022-5193(85)80226-5
  20. 20. B. O. Palsson, On the dynamics of the irreversible michaelis-menten reaction mechanism, Chemical Engineering Science, vol. 42, no. 3, pp. 447- 458, 1987.10.1016/0009-2509(87)80007-6
  21. 21. A. J. Roberts, Model emergent dynamics in complex systems. SIAM, 2015.10.1137/1.9781611973563
Language: English
Page range: 81 - 102
Submitted on: Jan 12, 2017
Accepted on: Apr 20, 2017
Published on: Jul 20, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 A. M. Bersani, A. Borri, A. Milanesi, P. Vellucci, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.