Have a personal or library account? Click to login
Energetic BEM for the numerical analysis of 2D Dirichlet damped wave propagation exterior problems Cover

Energetic BEM for the numerical analysis of 2D Dirichlet damped wave propagation exterior problems

By: A. Aimi,  M. Diligenti and  C. Guardasoni  
Open Access
|Jul 2017

Abstract

Time-dependent problems modeled by hyperbolic partial differential equations can be reformulated in terms of boundary integral equations and solved via the boundary element method. In this context, the analysis of damping phenomena that occur in many physics and engineering problems is a novelty. Starting from a recently developed energetic space-time weak formulation for 1D damped wave propagation problems rewritten in terms of boundary integral equations, we develop here an extension of the so-called energetic boundary element method for the 2D case. Several numerical benchmarks, whose numerical results confirm accuracy and stability of the proposed technique, already proved for the numerical treatment of undamped wave propagation problems in several dimensions and for the 1D damped case, are illustrated and discussed.

Language: English
Page range: 103 - 127
Submitted on: Nov 7, 2016
Accepted on: May 2, 2017
Published on: Jul 20, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 A. Aimi, M. Diligenti, C. Guardasoni, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.