Have a personal or library account? Click to login
The Effects of ZnO Nanoparticles in Combination with Alcohol on Biosynthetic Potential of Saccharomyces cerevisiae Cover

The Effects of ZnO Nanoparticles in Combination with Alcohol on Biosynthetic Potential of Saccharomyces cerevisiae

Open Access
|Dec 2017

References

  1. 1. Aebi, H. (1984). Catalase in Vitro. In: Methods in Enzymology, 105, 121-126.
  2. 2. Aguilar-Uscanga, B., Francois, J.M. (2003). A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37, 268-274.10.1046/j.1472-765X.2003.01394.x
  3. 3. Ban, D. K., Subhankar, P. (2014). Zinc Oxide Nanoparticles Modulates the Production of β-Glucosidase and Protects its Functional State Under Alcoholic Condition in Saccharomyces cerevisiae. Appl. Biochem Biotechnol., 173, 155–166. DOI 10.1007/s12010-014-0825-2.10.1007/s12010-014-0825-2
  4. 4. Chiseliţa, O., Usatîi, A., Taran, N., Rudic, V., Chiseliţa, N., Adajuc, V. (2010). Tulpină de drojdie Saccharomyces cerevisiae – sursă de β-glucani. Brevet de invenţie MD 4048. MD-BOPI, 6/2010.
  5. 5. Dey P., Harborn, J. (1993). Methods in Plant Biochemistry. Carbohydr. Academic Press, 2, 529 p
  6. 6. Efremova, N., Usatîi, A., Molodoi, E. (2013). Metodă de determinare a activităţii catalazei. Brevet de invenţie MD 4205, MD-BOPI, 2/2013.
  7. 7. Egorova, E., Kubatiev, A., Schvets, V. (2016). Biological Effects of Metal Nanoparticles. Springer International Publishing, 292 p. ISBN: 978-3-319-30905-7.10.1007/978-3-319-30906-4
  8. 8. Espitia, P. J. P., Nilda de Fátima Ferreira Soares, Jane Sélia dos Reis Coimbra, Nélio José de Andrade, Renato Souza Cruz, Eber Antonio Alves Medeiros. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol., 5, 1447–1464. DOI 10.1007/s11947-012-0797-6.10.1007/s11947-012-0797-6
  9. 9. FDA. (1997). Substances generally recognized as safe, Federal Register 62 FR 18938, April 1997
  10. 10. Gutul, T., Rusu, E., Condur, N., Ursaki, V., Goncearenco, E., Vlazan, P. (2014). Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J. Nanotechnol., 5, 402–406. doi:10.3762/bjnano.5.47.10.3762/bjnano.5.47
  11. 11. Kwiatkowski S., Kwiatkowski S.E. (2012). Yeast (Sacch. cerevisiae) glucan polysaccharides: occurrence, separation and application in food, feed and health industries. In: D.N. Karunaratne (ed.) The complex world of polysaccharides. Tech Publ., Rijeka, Croatia, 47-70.
  12. 12. Liu Hong-Zhi, Qiang Wang, Yuan-Yuan Liu, and Fang Fang. (2009). Statistical optimization of culture media and conditions for production of mannan by S. cerevisiae. Biotech. and Bioprocess Engineering, 14, 577-583. DOI/10.1007/s12257-008-0248-4.10.1007/s12257-008-0248-4
  13. 13. Lowry, O., Rosebough, N., Farr, A. et al. (1951). Protein measurment with the folin phenol reagent. J. Biol. Chem., 193, 265-275.10.1016/S0021-9258(19)52451-6
  14. 14. Padrova1, K., Čejkova1, A., Cajthaml, T., Kolouchova1, I., Vitova, M., Sigler, K., Řezanka, T. (2016). Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol (Praha), 61(4), 329-335. Doi: 10.1007/s12223-015-0442-7.10.1007/s12223-015-0442-726683688
  15. 15. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.10.1016/j.biotechadv.2008.09.00218854209
  16. 16. Roselli M., Finamore A., Garaguso I., Britti M. S., Mengheri E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by E. coli. J. of Nutrition, 133(12), 4077–4082.
  17. 17. Santimano, M. C., Kowshik, M. (2013). Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria. Environ Monit Assess, 185, 7205–7214. DOI 10.1007/s10661-013-3094-6.10.1007/s10661-013-3094-623341058
  18. 18. Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J.of Microbiological Methods, 54(2), 177–182.10.1016/S0167-7012(03)00037-X
  19. 19. Sirbu, T., Maslobrod, S. N., Mirgorod, Yu. A., Borodina, V. G., Borsch, N. A., Ageeva, L. S. (2015). Influence of Dispersed Solutions of Copper, Silver, Bismuth and Zinc Oxide Nanoparticles on Growth and Catalase Activity of Penicillium funiculosum. 3rd International Conference on Nanotechnologies and Biomedical Engineering. September 23-26, 2015, Chisinau, Republic of Moldova, Volume 55 of the series IFMBE Proceedings, 55, 271-274
  20. 20. Thammakiti, S.; Suphantharika, M.; Phaesuwan, T.; Verduyn. (2004). Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. International Journal of Food Science&Technology, 39(1), 21-29.10.1111/j.1365-2621.2004.00742.x
  21. 21. Zechner-Krpan, V., Petravic-Tominac, V., Panjkota-Krbavicic, I., Grba, S. Berkovic, K. (2009). Potential application of yeast β-glucans in food industry, Agriculturae Conspectus Scientificus, 74(4), 277-282.
DOI: https://doi.org/10.1515/aucft-2017-0011 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 19 - 24
Published on: Dec 29, 2017
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Natalia Chiseliţa, Agafia Usatii, Nadejda Efremova, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.