Have a personal or library account? Click to login
Rye non-starch polysaccharides: their impact on poultry intestinal physiology, nutrients digestibility and performance indices – a review Cover

Rye non-starch polysaccharides: their impact on poultry intestinal physiology, nutrients digestibility and performance indices – a review

Open Access
|Apr 2017

References

  1. Almirall M., Esteve - Garcia E. (1994). Rate of passage of barley diet wíth chromium oxide: influence of age and poultry strain and effect of ß-glucanase supplementation. Poultry Sci., 73: 1433-1440.
  2. Andersson R., Westerlund E., Tilly A.C., Åman P. (1993). Natural variations in the chemical composition of white flour. J. Ceral. Sci., 17: 183-189.
  3. Annison G. (1993). The chemistry of dietary fiber. In: Dietary Fiber and Beyond-Australian Perspectives, Samman S. and Anisson G. (ed). Nutrition Society of Australia Inc. Perth, WA., pp. 1-18.
  4. Bach Knudsen K.E. (2001). The nutritional significance of “dietary fibre” analysis. Anim. Feed. Sci. Technol., 90: 3-20.
  5. Bach Knudsen K.E. (2014). Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Sci., 93: 2380-2393.
  6. Bedford M.R., Cowieson A.J. (2012). Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed. Sci. Technol., 173: 76-85.
  7. Bedford M.R., Classen H.L., Campbell G.L. (1991). The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poultry Sci., 70: 1571-1577.
  8. Boros D., Fraś A. (2015). Monographs and dissertations 49/2015. Plant Breeding and Acclimatization Institute - National Research Institute.
  9. Boros D., Marquardt R.R., Guenter W. (1998). Site of exoenzyme action in gastrointestinal tract of broiler chicks. Can. J. Anim. Sci., 78: 599-602.
  10. Brufau J., Cos R., Perez-Vendrell A., Esteve - García E. (1994). Performance of laying hens as affected by the supplementation ofabarley-based diet withacrude enzyme preparation from Trichoderma viride. Can. J. Anim. Sci., 74: 129-133.
  11. Campbell G., Campbell L., Classen H. (1983). Utilisation of rye by chickens: effect of microbial status, diet gamma irradiation and sodium taurocholate supplementation. Brit. Poultry Sci., 24: 191-203.
  12. Cardoso V., Ferreira A.P., Costa M., Ponte P.I.P., Falcão L., Freire J.P., Lordelo M.M., Ferreira L.M.A., Fontes C.M.G.A., Ribeiro T. (2014). Temporal restriction of enzyme supplementation in barley-based diets has no effect in broiler performance. Anim. Feed. Sci. Technol., 198: 186-195.
  13. Choct M., Annison G. (1992). The inhibition of nutrient digestion by wheat pentosans. Brit. J. Nutr., 67: 123-132.
  14. Coles G.D., Hartunian-Sowa S.M., Jamieson P.D., Hay A.J., Atwell W.A., Fulcher R.G. (1997). Environmentally-induced variation in starch and non-starch polysaccharide content in wheat. J. Cereal Sci., 26: 47-54.
  15. Comino P., Collins H., Lahnstein J., Beahan Ch., Gidley M.J. (2014). Characterisation of soluble and insoluble cell wall fractions from rye, wheat and hull-less barley endosperm flours. Food Hydrocolloid., 41: 219-226.
  16. Cyran M., Lapinski B. (2006). Physico-chemical characteristics of dietary fibre fractions in the grains of tetraploid and hexaploid triticales:acomparison with wheat and rye. Plant Breeding Seed Sci., 54: 77-84.
  17. Dänicke S., Simon O., Jeroch H., Bedford M. (1997 a). Interactions between dietary fat type and xylanase supplementation when rye based diets are fed to broiler chickens. 1. Physicochemical chyme features. Brit. Poultry Sci., 38: 537-545.10.1080/000716697084180349510999
  18. Dänicke S., Simon O., Jeroch H., Bedford M. (1997 b). Interactions between dietary fat type and xylanase supplementation when rye based diets are fed to broiler chickens 2. Performance, nutrient digestibility and the fat-soluble vitamin status of liver. Brit. Poultry Sci., 38: 546-556.10.1080/000716697084180359511000
  19. Edney M.J., Marchylo B.A., MacGregor A.W. (1991). Structure of total barley beta glucan. J. I. Brewing., 97: 39-44.
  20. El - Wafa A.S., Shalash S.M., Selim N.A., Abdel- Khalek ? , Radwan A.M., Abdel- Salam A.F., (2013). Response of broiler chicks to xylanase supplementation of corn/rye containing diets varying in metabolizable energy. Int. J. Poultry Sci., 12: 705-713.
  21. Engberg R.M., Hedemann M.S., Steenfeldt S., Jensen B.B. (2004). Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Sci., 83: 925-938.
  22. Francesch M., Pérez-Vendrell A.M., Broz J., (2012). Effects ofamono-component endoxylanase supplementation on the nutritive value of wheat-based broiler diets. Brit. Poultry Sci., 53: 809-816.
  23. Fuente J.M., Perez de Ayala P., Flores A., Villamide M.J. (1998). Effect of storage time and dietary enzyme on the metabolizable energy and digesta viscosity of barley-based diets for poultry. Poultry Sci., 77: 90-97.
  24. Fuller R. (2001). The chicken gut microflora and probiotic supplements. J. Poultry Sci., 38: 189-196.
  25. Gebruers K., Dornez E., Bedõ Z., Rakszegi M., Frás A., Boros D., Courtin C.M., Delcour J.A. (2010). Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAINdiversity screen. J. Agric. Food Chem., 58: 9353-9361.
  26. Goncharenko A.A., Timoshchenko A.S., Berkutova N.S., Ermakov S.A., Makarov A.V., Semenova T.V., Tochilin V.N., Lazareva E.N., Tsygankova N.V., Krakhnalev S.V. (2011). Divergent selection for water extract viscosity in winter rye. Russian Agric. Sci., 37: 273-279.
  27. Grajewski J., Błajet - Kosicka A., Twarużek M., Kosicki R. (2012). Occurrence of mycotoxins in Polish animal feed in years 2006-2009. J. Anim. Physiol. Anim. Nutr., 96: 870-877.
  28. GUS (2015). Land use and sown area in 2015. Information and statistical studies. Warsaw.
  29. Guyard - Nicodème M., Keita A., Quesne S., Amelot M., Poezevara T., Le Berre B., Sánchez J., Vesseur P., Martín Á., Medel P., Chemaly M. (2016). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poultry Sci., 95: 298-305.
  30. Häner L.L, Stamp P., Kreuzer M., Bouguennec A., Pellet D. (2013). Viscosity of triticale varieties differs in its response to temperature after flowering. Field Crops Res., 149: 347-353.
  31. Hashemipour H., Khaksar V., Rubio L.A., Veldkamp T,van Krimpen M.M. (2016). Effect of feed supplementation withathymol plus carvacrol mixture, in combination or not with an NSP-degrading enzyme, on productive and physiological parameters of broilers fed on wheat-based diets. Anim. Feed. Sci. Technol., 211: 117-131.
  32. Henry R.J. (1985). Acomparison of the non-starch carbohydrates in cereal grains. J. Sci. Food Agric., 36: 1243-1253.
  33. Hetland H., Svihus B. (2001). Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Brit. Poultry Sci., 42: 354-361.
  34. Hetland H., Svihus B., Choct M. (2005). Role of insoluble fiber on gizzard activity in layers. J. Appl. Poultry Res., 14: 38-46.
  35. Jacob J.P., Pescatore A.J. (2012). Using barley in poultry diets - Areview. J. Appl. Poultry Res., 21: 915-940.
  36. Jeroch H. (1998). Jahrbuch für die Geflügelwirtschaft, Publisher Eugen Ulmer Stuttgart, p. 126.
  37. Jiménez-Moreno E., González-Alvarado J.M., Lazaro R., Mateos G.G. (2009). Effect of type of cereal, heat processing of the cereal, and fiber inclusion in the diet on gizzard p Hand nutrient utilization in broilers at different ages. Poultry Sci., 88: 1925-1933.
  38. Johannson L., Tuomainen P., Ylinen M., Ekholm P., Virkki L. (2004). Structural analysis of water soluble and insoluble β-glucans of whole grain oats and barley. Carbohyd. Polym., 58: 267-274.
  39. Józefiak D., Rutkowskia A., Marti S.A. (2004). Carbohydrate fermentation in the avian ceca: Areview. Anim. Feed. Sci. Technol., 113: 1-15.
  40. Józefiak D., Rutkowski A., Jensen B.B., Engberg R.M. (2006). The effect of β-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. Brit. Poultry Sci., 47: 57-64.
  41. Józefiak D., Rutkowski A., Jensen B.B., Engberg R.M. (2007). Effects of dietary inclusion of triticale, rye and wheat and xylanase supplementation on growth performance of broiler chickens and fermentation in the gastrointestinal tract. Anim. Feed. Sci. Technol., 132: 79-93.
  42. Jurgens H.U., Jansen G., Wegner C.B., (2012). Characterisation of several rye cultivars with respect to arabinoxylans and extract viscosity. J. Agr. Sci., 5: 1-12.
  43. Kalantar M., Khajaliand F., Yaghobfar A. (2015). Different dietary source of non-starch polysaccharides supplemented with enzymes affected growth and carcass traits, blood parameters and gut physicochemical properties of broilers. Glob. J. Anim. Sci. Res., 3: 412-418.
  44. Langhout D.J., (1998). The role of the intestinal flora as affected by non-starch polysaccharides in broiler chicks. Department of Animal Nutrition, Wageningen University, Wageningen, The Netherlands.
  45. Latorre J.D., Hernandez-Velasco X., Bielke L.R., Vicente J.L., Wolfenden R., Menconi A., Hargis B.M., Tellez G. (2015 a). Evaluation ofa Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed onarye-based diet. Brit. Poultry Sci., 56: 723-732.10.1080/00071668.2015.110105326539833
  46. Latorre J.D., Hernandez-Velazco X., Kuttappan V.A., Wolfenden R., Vicente J.L., Wolfenden A., Bielke L., Prando O., Morales E., Hargis B.M., Tellez G. (2015 b). Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model with different poultry diets. Front. Vet. Sci., 2: 25.10.3389/fvets.2015.00025467218626664954
  47. Lazaro R., Gracia M., Aranibar M.J., Mateos G.G. (2003). Effect of enzyme addition to wheat, barley- and rye-based diets on nutrient digestibility and performance of laying hens. Brit. Poultry Sci., 44: 256-265.
  48. Masey O’Neil H.V., Smith J.A., Bedford M.R. (2014). Multicarbohydrase enzymes for nonruminants. Asian-Australas. J. Anim. Sci., 2: 290-301.
  49. Mathlouthi N., Mallet S., Saulnier L., Quemener B., Larbier M. (2002). Effects of xylanase and glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fedawheat and barleybased diet. Anim. Res., 51: 395-406.
  50. Matin H.R.H., Saki A.A., Aliarabi H., Shadmani M., Abyane H.Z. (2012). Intestinal broiler microflora estimation by artificial neural network. Neural Comp. Appl., 21: 1043-1047.
  51. Mc Nab J.M., Boorman K.N. (2002). Poultry feedstuffs, supply, composition and nutritive value. Poult. Sci. S, 26, 65 pp.
  52. Meluzzi A., Fabbri C., Folegatti E., Sirri F. (2008). Survey of chicken rearing conditions in Italy: Effects of litter quality and stocking density on productivity, foot dermatitis and carcase injuries. Brit. Poultry Sci., 49: 257-264.
  53. Mendes A.R., Ribeiro T., Correia B.A., Bule P., Maçãs B., Falcão L., Freire J.P.B., Ferreira L.M.A., Fontes C.M.G.A., Lordelo M.M. (2012). Low doses of exogenous xylanase improve the nutritive value of triticale-based diets for broilers. J. Appl. Poultry Res., 22: 92-99.
  54. Meng X., Slominski B.A. (2005). Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected byamulticarbohydrase preparation of cell wall degrading enzymes. Poultry Sci., 84: 1242-1251.
  55. Montagne L., Pluske J.R., Hampson D.J. (2003). Areview of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed. Sci. Technol., 108: 95-117.
  56. Mourão J., Pinheiro V. (2009). Effects of rye, wheat and xylanase supplementation on diet nutritive value and broiler chicken performance. Rev. Bras. Zootech., 38: 2417-2424.
  57. Munyaka P.M., Nandha N.K., Kiarie E., Nyachoti C.M., Khafipour E. (2015). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Sci., 95: 528-540.
  58. Nahas J., Lefrançois M.R. (2001). Effects of feeding locally grown whole barley with or without enzyme addition and whole wheat on broiler performance and carcass traits. Poultry Sci., 80: 195-202.
  59. O’Neill H.V., Smith J.A., Bedford M.R. (2014). Multicarbohydrase enzymes for non-ruminants. Asian-Australas. J. Anim. Sci., 27: 290-301.
  60. Pan C.F., Igbasan F.A., Guenter W., Marquardt R.R. (1998). The effects of enzyme and inorganic phosphorus supplements in wheat- and rye-based diets on laying hen performance, energy, and phosphorus availability. Poultry Sci., 77: 83-89.
  61. Patel M.B., M C Ginnis J. (1980). Effect of gamma irradiating rye or supplementingarye-containing layer diet with penicillin or pectic enzymes on egg production. Poultry Sci., 59: 2287-2289.
  62. Petersson K., Nordlund E., Tornber E., Tornberg E., Buchert J. (2012). Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran. J. Sci. Food Agric., 93: 882-889.
  63. Philippe S., Barron C., Robert P., Dexaux M.F., Saulnier L., Guillon F. (2006). Characterization using Raman microspectroscopy of arabinoxylans in the walls of different cell types during the development of wheat endosperm. J. Agric. Food Chem., 54: 5113-5119.
  64. Ravn J.L., Martens H.J., Pettersson D., Rangel N., Pedersen N.R. (2016). Acommercial GH 11 xylanase mediates xylan solubilisation and degradation in wheat, rye and barley as demonstrated by microscopy techniques and wet chemistry methods. Anim. Feed. Sci. Technol., 219: 216-225.
  65. Ricke S. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci., 82: 632-639.
  66. Rivière A., Moens F., Selak M., Maes D., Weckx S., De Vuyst L. (2014). The ability of bifidobacteria to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain dependent. Appl. Env. Microbiol., 80: 204-217.
  67. Roberts C.L., Keita A.V., Duncan S.H. (2010). Translocation of Crohn’s disease E. coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut, 59: 1331-1339.
  68. Roberts C.L., Keita A.V., Parsons B.N., Prorok - Hamon M., Knight P., Winstanley C., O’Kennedy N., Söderholm J.D., Rhodes J.M., Campbell B.J. (2013). Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. J. Nutr. Bioch., 24: 97-103.
  69. Rodehutscord M., Rückert Ch., Maurer H.P., Schenkel H., Schipprack W., Bach Knudsen K.E., Schollenberger M., Laux M., Eklund M., Siegert W., Mosenthin R. (2016). Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch. Anim. Nutr., 70: 87-107.
  70. Santos C.I., Ribeiro T., Ponte P.I.P., Fernandes V.O., Falcão L., Freire J.P., Prates J.A.M., Ferreira L.M.A., Fontes C.M.G.A., Lordelo M.M. (2013). The effects of restricting enzyme supplementation in rye-based diets for broilers. Anim. Feed. Sci. Technol., 186: 214-217.
  71. Sarikhan M., Shahryar H.A., Gholizadeh B., Hosseinzadeh M.H., Beheshti B., Mahmoodnejad A. (2010). Effects of insoluble fiber on growth performance, carcass traits and ileum morphological parameters on broiler chick males. Int. J. Agric. Biol. Eng., 12: 531-536.
  72. Saulnier L., Guillon F., Sado P., Rouau X. (2007). Plant cell wall polysaccharides in storage organs: xylans (food applications). In: Kamerling, Hans, Comprehensive Glycoscience, NLD: Elsevier, pp. 653-689.10.1016/B978-044451967-2/00147-1
  73. Schwarz T., Kuleta W., Turek A., Tuz R., Nowicki J., Rudzki B., Bartlewski P.M. (2015). Assessing the efficiency of usingamodern hybrid rye cultivar for pig fattening, with emphasis on production costs and carcass quality. Anim. Prod. Sci., 55: 467-473.
  74. Silva S.S.P., Smithard R.R. (2002). Effect of enzyme supplementation ofarye-based diet on xylanase activity in the small intestine of broilers, on intestinal crypt cell proliferation and on nutrient digestibility and growth performance of the birds. Brit. Poultry Sci., 43: 274-282.
  75. Simon O. (2000). Non starch polysaccharide (NSP) hydrolysing enzymes as feed additives: mode of action in the gastrointestinal tract. Lohmann Inf., 23: 7-13.
  76. Slominski B.A. (2011). Recent advances in research on enzymes for poultry diets. Poultry Sci., 90: 2013-2013.
  77. Smulikowska S., Nguyen C.V. (2001). Anote on variability of water extract viscosity of rye grain from north-east regions of Poland. J. Anim. Feed Sci., 10: 687-693.
  78. Smulikowska S., Rutkowski A. (2005). Standards of Poultry Nutrition. 4th ed., Suppl. The Kielanowski Institute of Animal Physiology and Nutrition PAN.
  79. Taylor R.D., Jones G.P.D. (2004). The incorporation of whole grain into pelleted broiler chicken diets. II. Gastrointestinal and digesta characteristics. Brit. Poultry Sci., 45: 237-246.
  80. Teirlynck E., Bjerrum L., Eeckhaut V., Huygebaert G., Pasmans F., Haesebrouck F., Dewulf J., Ducatelle R., Van Immerseel F. (2009). The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. Brit. J. Nutr., 102: 453-1461.
  81. Tellez G., Latorre J.D., Kuttappan V.A., Kogut M.H., Wolfenden A., Hernandez-Velasco X., Hargis B.M., Bottje W.G., Bielkend L.R., Faulkner O.B. (2014). Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet., 5: 1-7.
  82. Tellez G., Latorre J.D., Kuttappan V.A., Hargis B.M., Hernandez-Velasco X. (2015). Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in turkey poults. (http://dx.doi.org/10.1371/journal.pone.0122390).
  83. Thammarutwasik P., Hongpattarakere T., Chantachum S., Kijroongrojana K., Itharat A., Reanmongkol W. (2009). Prebiotics -areview. Songklanakarin J. Sci. Tech., 31: 401-408.
  84. Toole G.A., Wilson R.H., Parker M.L., Wellner N.K., Wheeler T.R., Shewry P.R., Mills E.N.C. (2007). The effect of environment on endosperm cell-wall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study. Planta, 225: 1393-1403.
  85. Van der Wielen P.W., Biesterveld S., Notermans S., Hofstra H., Urlings B.A.P.,van Knapen F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Env. Microbiol., 66: 2536-2540.
  86. van Krimpen M.M., Borgijink S., Schokker D., Vastenhouw S.,de Bree F.M., Bossers A., Fabri T.,de Bruijn N., Jansman A.J.M., Rebel J.M.J., Smits M.A., van Emous R.A. (2015). Effects of rye inclusion in grower diets on immunity-related parameters and performance of broilers. Livestock Research Report 889, Wageningen.
  87. Wasilewska E. (2008). Changes in the structure of crops in Poland in years 1996-2007. ZN SGGW Ei OGŻ, 71: 123-135.
  88. Williams P.E.V., Geraert P.A., Uzu G., Annison G. (1997). Factors affecting non-starch polysaccharide digestibility in poultry. In: Feed manufacturing in Southern Europe: new challenges, Morand-Fehr P. (ed). Zaragoza, Ciheam-Iamz., pp. 125-134.
  89. Williams M.P., Brown B., Rao S., Lee J.T. (2014). Evaluation of beta-mannanase and nonstarch polysaccharide-degrading enzyme inclusion separately or intermittently in reduced energy diets fed to male broilers on performance parameters and carcass yield. J. Appl. Poultry Res., 24: 715-723.
DOI: https://doi.org/10.1515/aoas-2016-0090 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 351 - 369
Submitted on: Nov 16, 2016
|
Accepted on: Feb 9, 2017
|
Published on: Apr 28, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Dorota Bederska-Łojewska, Sylwester Świątkiewicz, Anna Arczewska-Włosek, Tomasz Schwarz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.