Have a personal or library account? Click to login
Bias Drift Estimation for MEMS Gyroscope Used in Inertial Navigation Cover

Bias Drift Estimation for MEMS Gyroscope Used in Inertial Navigation

Open Access
|Jun 2017

References

  1. 1. Acosta Calderon C.A., Mohan E.R., Ng B.S. (2015), Development of a hospital mobile platform for logistics tasks, Digital Communications and Networks, 1 (2), 102-111.10.1016/j.dcan.2015.03.001
  2. 2. Allan D.W. (1966), Statistics of atomic frequency standards, Proceedings of the IEEE, 54 (2), 221-230.10.1109/PROC.1966.4634
  3. 3. Barrett J.M. (2014), Analyzing and Modeling Low-Cost MEMS IMUs for use in an Inertial Navigation System, Worcester Polytechnic Institute.
  4. 4. Chatterjee G., Latorre L., Mailly F., Nouet P., Hachelef N., Oueda C. (2015), Smart-MEMS based inertial measurement units: gyro-free approach to improve the grade, Microsystem Technologies, 1-1010.1109/DTIP.2015.7160966
  5. 5. Enberg D. (2015), Performance Evaluation of Short Time Dead Reckoning for Navigation of an Autonomous Vehicle, Department of Electrical Engineering, Linköpings universitet
  6. 6. Fang L., Antsaklis P.J., Montestruque L.A., McMickell M.B., Lemmon M., Sun Y., Fang H., Koutroulis I., Haenggi M., Xie M., Xie X. (2005) Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience, IEEE Trans Instrum Meas, 54, 2342-2358.10.1109/TIM.2005.858557
  7. 7. Ferraina M. (2015), L3GD20H: 3-axis digital output gyroscope, STMicroelectronics, DocID026442 Rev 2
  8. 8. Fuchs C., Aschenbruck N., Martini P., Wieneke M (2011), Indoor tracking for mission critical scenarios: A survey, Pervasive and Mobile Computing, 7 (1), 1-15.10.1016/j.pmcj.2010.07.001
  9. 9. Ganesharajah T., Hall N.G., Sriskandarajah C. (1988), Design and operational issues in AGV-served manufacturing systems, Annals of Operations Research, 76 (0), 109-154.10.1023/A:1018936219150
  10. 10. Gersdorf B., Freese U. (2013), A Kalman Filter for Odometry using a Wheel Mounted Inertial Sensor, ICINCO, 1, 388-395.
  11. 11. Guizzo E. (2008), Three Engineers, Hundreds of Robots, One Warehouse, IEEE Spectrum, 45(7), 26-34.10.1109/MSPEC.2008.4547508
  12. 12. Harle R. (2013), A Survey of Indoor Inertial Positioning Systems for Pedestrians, IEEE Communications Surveys & Tutorials, 15(3), 1281-1293.10.1109/SURV.2012.121912.00075
  13. 13. Hedberg E., Hammar M. (2015), Train Localization and Speed Estimation Using On-Board Inertial and Magnetic Sensors, Department of Electrical Engineering, Linköpings universitet
  14. 14. Herrero-Perez D., Jose J., Martinez-Barbera H. (2013), An Accurate and Robust Flexible Guidance System for Indoor Industrial Environments, International Journal of Advanced Robotic Systems, 10 (1), 1-910.5772/56478
  15. 15. Hyyti H., Visala A. (2015), A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs, International Journal of Navigation & Observation, 2015, 1–18.10.1155/2015/503814
  16. 16. Ijaz F., Yang H.K., Ahmad A.W., Lee C. (2013), Indoor positioning: A review of indoor ultrasonic positioning systems, Advanced Communication Technology (ICACT), 2013 15th International Conference, 1146-1150.
  17. 17. Institute of Electrical and Electronics Engineers (2004), IEEE standard specification format guide and test procedure for coriolis vibratory gyros, Institute of Electrical and Electronics Engineers, New York.
  18. 18. Jiang C., Xue L., Chang H., Yuan W. (2012), Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling, Sensors, 12(12), 172-1737.10.3390/s120201720330413622438734
  19. 19. Lee S.-Y., Yang H.-W. (2012), Navigation of automated guided vehicles using magnet spot guidance method, Robotics and Computer-Integrated Manufacturing, 28(3), 425-436.10.1016/j.rcim.2011.11.005
  20. 20. Mautz R. (2009), Overview of current indoor positioning systems, Geodesy and Cartography, 35(1), 18-22.10.3846/1392-1541.2009.35.18-22
  21. 21. Mountz M.C. (2005), Material handling system and method using mobile autonomous inventory trays and peer-to-peer communications, US/6950722
  22. 22. Romaniuk S. Gosiewski Z. (2014), Kalman Filter Realization for Orientation and Position Estimation on Dedicated Processor, Acta Mechanica et Automatica, 8(2), 88-9410.2478/ama-2014-0016
  23. 23. Scarlett J. (2007), Enhancing the performance of pedometers using a single accelerometer, Application Note, Analog Devices, AN-900
  24. 24. STMicroelectronics (2013), MEMS motion sensor: three-axis digital output gyroscope L3GD20H Datasheet.
  25. 25. Thielman L.O., Bennett S., Barker C.H., Ash M.E. (2002), Proposed IEEE Coriolis Vibratory Gyro standard and other inertial sensor standards, Position Location and Navigation Symposium, 2002 IEEE, 351-358.
  26. 26. Weinberg H. (2011), Gyro mechanical performance: The most important parameter, Technical Article MS-2158, Analog Devices
  27. 27. Yuan Q., Chen I.-M. (2014), Localization and velocity tracking of human via 3 IMU sensors, Sensors & Actuators: A. Physical, 212, 25-33.
  28. 28. Zhang R., Bannoura A., Hoflinger F., Reindl L.M., Schindelhauer C. (2013), Indoor localization using a smart phone, Sensors Applications Symposium (SAS), 2013 IEEE, 38–42.
DOI: https://doi.org/10.1515/ama-2017-0016 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 104 - 110
Submitted on: May 8, 2016
Accepted on: May 15, 2017
Published on: Jun 15, 2017
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Radosław Cechowicz, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.