Have a personal or library account? Click to login
Profile of Fatty Acids and Spectroscopic Characteristics of Selected Vegetable Oils Extracted by Cold Maceration Cover

Profile of Fatty Acids and Spectroscopic Characteristics of Selected Vegetable Oils Extracted by Cold Maceration

Open Access
|Apr 2018

References

  1. Achremowicz, K., Szary-Sworst, K. (2005). Wielonienasycone kwasy tłuszczowe czynnikiem poprawy stanu zdrowia człowieka. Żywność. Nauka. Technologia. Jakość, 3(44), 23-55.
  2. Abdul, R., Che Man, Y.B., Yusof, F.M. (2014). The use of FTIR spectroscopy and chemometrics for rapid authentication of extra virgin olive oil. JAOCS, Journal of the American Oil Chemists' Society 91.2, 207-213.
  3. Ahmad, J., Yusup, S., Bokhari, A., Kamil, R.N.M. (2014). Study of fuel properties of rubber seed oil based biodiesel. Energy Conversion and Management, 78, 266-275.10.1016/j.enconman.2013.10.056
  4. Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., Lorquin, J., Labat, M., Asther, M., Lesage-Meessen, L. (2005). Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochemistry, 40, 1855-1862.10.1016/j.procbio.2004.06.054
  5. Bryś, J., Wirkowska, M., Górska, A., Ostrowska-Ligęza, E., Bryś, A., Koczoń, P. (2013). The use of DSC and FT-IR spectroscopy for evaluation of oxidative stability of interesterified fats. Journal of Thermal Analysis and Calorimetry, 1-7, 23.10.1007/s10973-012-2794-4
  6. Ciemniewska-Żytkiewicz, H., Bryś, J., Sujka, K., Koczoń, P. (2015). Assessment of the hazelnuts roasting process by pressure differential scanning calorimetry and MID-FT-IR spectroscopy. Food Analytical Methods, 8(10), 2465-2473.10.1007/s12161-015-0133-7
  7. Dubois, V., Breton, S., Linder, M., Fanni, J., Parmentier, M. (2007). Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology, 109, 710-732.10.1002/ejlt.200700040
  8. Eder, K., Brandsch, C. (2002). The effect of fatty acid composition of rapeseed oil on plasma lipids and oxidative stability of low-density lipoproteins in cholesterol-fed hamsters. European Journal of Lipid Science and Technology, 104, 3-13.10.1002/1438-9312(200201)104:1<3::AID-EJLT3>3.0.CO;2-A
  9. El-Adawy, T.A. Taha, K.M. (2001). Characteristics and composition of different seed oils and flours. Food chemistry, 74, 47-54.10.1016/S0308-8146(00)00337-X
  10. Guillen, M.D., Cabo, N. (1997). Infrared spectroscopy in the study of edible oils and fats. Journal of the Science of Food and Agriculture, 75, 1-11.10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R
  11. Guillen, M.D., Cabo, N. (1997). “Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists' Society, 74.10, 1281-1286.
  12. Gurdeniz, G., Ozen, B. (2009). Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry, 116, 519-525.10.1016/j.foodchem.2009.02.068
  13. Kapoor R., Huang, Y.-S. (2006). Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Current pharmaceutical biotechnology, 7, 531-534.10.2174/138920106779116874
  14. Kim, K.-N., Heo, S.-J., Song, C.B., Lee, J., Heo, M.-S., Yeo, I.-K., Kang, K.A., Hyun, J.W., Jeon, Y.-J. (2006). Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochemistry, 41, 2393-2401.10.1016/j.procbio.2006.06.028
  15. Koczoń, P., Lipińska, E., Czerniawska-Piątkowska, E., Mikuł, M., Bartyzel, B.J. (2016). The change of fatty acids composition of Polish biscuits during storage. Food chemistry, 202, 341-348.10.1016/j.foodchem.2016.02.019
  16. Kolayli, S., Tarhan, O., Kara, M., Aliyazicioglu, Kucuk, R.M. (2011). An investigation of frequently consumed edible oils in Turkey in terms of omega fatty acids. Chemistry of Natural Compounds, 47, 347.10.1007/s10600-011-9929-x
  17. Koutsouki, A., Tegou, E., Badeka, A., Kontakos, S., P. Pomonis Kontominas, M., (2016). In situ and conventional transesterification of rapeseeds for biodiesel production. The effect of direct sonication. Industrial Crops and Products, 84, 399-407.10.1016/j.indcrop.2016.02.031
  18. Latif, S., Anwar, F., Ashraf, M. (2007). Characterization of enzyme-assisted cold-pressed cottonseed oil. Journal of Food Lipids, 14, 424-436.10.1111/j.1745-4522.2007.00097.x
  19. Lazos, E. S., Tsaknis, J., Bante, M., (1995). Changes in pumpkin seed oil during heating. Grasas y aceites, 46, 233-239.10.3989/gya.1995.v46.i4-5.930
  20. Mansour, E., Dworschak, E.J., Peredi, A. (1993). Lugasi, Evaluation of pumpkin seed (Cucurbita pepo, Kakai 35) as a new source of protein. Acta Alimentaria-an International Journal of Food Science, 22, 3-14.
  21. Mehrotra, R. (2006). Infrared Spectroscopy, Gas Chromatography/Infrared in Food Analysis. John Wiley & Sons, Ltd, 2000.
  22. Murkovic, M. Pfannhauser, W. (2000). Stability of pumpkin seed oil. European Journal of Lipid Science and Technology, 102, 607-611.10.1002/1438-9312(200010)102:10<607::AID-EJLT607>3.0.CO;2-E
  23. Nunes Cleiton, A. (2014). Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Research International, 60, 255-261.10.1016/j.foodres.2013.08.041
  24. Obiedzińska, A., Waszkiewicz-Robak, B. (2012). Oleje tłoczone na zimno jako żywność funkcjonalna. Zywność. Nauka. Technologia. Jakość, 1(80), 27-44.
  25. Parker, T.D., Adams, D., Zhou, K., Harris, M., Yu, L. (2006). Fatty acid composition and oxidative stability of cold-pressed edible seed oils. Journal of Food Science, 68, 1240-1243.10.1111/j.1365-2621.2003.tb09632.x
  26. Parry, J., Hao, Z., Luther, M., Su, L., Zhou, K., Yu, L.L. (2006). Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. Journal of the American Oil Chemists' Society, 83, 847-854.10.1007/s11746-006-5036-8
  27. Parry, J. Yu, L. (2004). Fatty acid content and antioxidant properties of cold-pressed black raspberry seed oil and meal. Journal of Food Science, 69, 22.10.1111/j.1365-2621.2004.tb13356.x
  28. Radović, Jagoš, R., Aeppli, Ch., Nelson, R.K., Jimenez, N., Reddy, Ch.M., Bayona,, J.M., Albaigés, J. (2014). Assessment of photochemical processes in marine oil spill fingerprinting. Marine Pollution Bulletin 79.1, 268-277.10.1016/j.marpolbul.2013.11.029
  29. Ramadan, M.F. Mörse, l J.-T. (2003). Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry, 51, 969-974.10.1021/jf020778z
  30. Sabudak, T. (2007). Fatty acid composition of seed and leaf oils of pumpkin, walnut, almond, maize, sunflower and melon. Chemistry of Natural Compounds, 43(4), 465-467.10.1007/s10600-007-0163-5
  31. Safar, M., Bertrand, D., Robert, P., Devaux, M.F., Genot, C. (1994). Characterization of edible oils, butters and margarines by Fourier transform infrared spectroscopy with attenuated total reflectance. Journal of the American Oil Chemists' Society 71.4, 371-377.10.1007/BF02540516
  32. Schinas, P., G. Karavalakis, C. Davaris, G. Anastopoulos, D. Karonis Zannikos, F., Stournas, S., Lois, E. (2009). Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass and Bioenergy, 33, 44-49.10.1016/j.biombioe.2008.04.008
  33. Soto, C., Concha, J., Zuniga, M. (2008). Antioxidant content of oil and defatted meal obtained from borage seeds by an enzymatic-aided cold pressing process. Process Biochemistry, 43, 696-699.10.1016/j.procbio.2008.02.006
  34. Standard For Named Vegetable Oils Codex Stan. Codex Alimentarius, 210-(1999).
  35. Sujka, K., Koczoń, P., Ceglińsk, A., Reder, M., Ciemniewska-Żytkiewicz, H. (2017). The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. Journal of analytical methods in chemistry, 1-9, 11.10.1155/2017/4315678
  36. Yang, H., Irudayaraj, J., Paradkar, M.M. (2005). Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry, 93, 25-32.10.1016/j.foodchem.2004.08.039
  37. Yan-qun, L., De-xin, Kong, Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy.” Industrial Crops and Products 41, 269-278.
  38. Younis, Y., Ghirmay, S., Al-Shihry, S. (2000). African Cucurbita pepo L.: properties of seed and variability in fatty acid composition of seed oil. Phytochemistry, 54, 71-75.10.1016/S0031-9422(99)00610-X
  39. Verma, P., Sharma, M. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071.10.1016/j.rser.2016.04.054
  40. Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils.” Analytica Chimica Acta, 573, 459-465.10.1016/j.aca.2006.05.03417723561
DOI: https://doi.org/10.1515/agriceng-2018-0006 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 61 - 71
Submitted on: Sep 1, 2017
Accepted on: Nov 1, 2017
Published on: Apr 16, 2018
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Magdalena Kachel, Arkadiusz Matwijczuk, Artur Przywara, Artur Kraszkiewicz, Milan Koszel, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.