Have a personal or library account? Click to login
Pollution Indices as Tools For Evaluation of the Accumulation and Military Activities on the Molotov Line During Wwii Still Detectable in the Chemical Record of Soils in Roztocze (Se Poland) Cover

Pollution Indices as Tools For Evaluation of the Accumulation and Military Activities on the Molotov Line During Wwii Still Detectable in the Chemical Record of Soils in Roztocze (Se Poland)

Open Access
|Oct 2025

References

  1. Barker A.J., Clausen J.L., Douglas T.A., Bednar A.J., Griggs C.S., Martin W.A., 2021. Environmental impact of metals resulting from military training activities: A review. Chemosphere 265: 129110. DOI 10.1016/j.chemosphere.2020.129110.
  2. Bausinger T., Bonnaire E., Preuss J., 2007. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun. Science of the Total Environment 382: 259–271. DOI 10.1016/j.scitotenv.2007.04.029.
  3. Baxter S., 2006. Guidelines for soil description. Rome: Food and Agriculture Organization of the United Nations. Experimental Agriculture 43.2.
  4. Bereza T., Chmielowiec P., 2000. Krótka historia i przewodnik po zapomnianych fortyfikacjach na Ziemi Przemyskiej i Roztoczu. Regionalny Ośrodek Kultury, Edukacji i Nauki w Przemyślu, Przemyślu.
  5. Bereza T., Chmielowiec P., Grechuta J., 2002. W cieniu „Linii Mołotowa”. Ochrona granicy ZSRR z III Rzeszą między Wisznią a Sołokiją w latach 1939-1941. Instytut Pamięci Narodowej, Rzeszów.
  6. Broomandi P., Guney M., Kim J.R., Karaca F., 2020. Soil contamination in areas impacted by military activities: A critical review. Sustainability 12(21): 9002. DOI 10.3390/su12219002.
  7. Celej P., 2021. Jak rozminowywano lasy po II wojnie światowej. Online: https://www.lasy.gov.pl/pl/informacje/aktualnosci/jak-rozminowywano-lasy-po-ii-wojnie-swiatowej (accessed 15 November 2023).
  8. Charles S., Geusens N., Vergalito E., Nys B., 2020. Interpol review of gunshot residue 2016-2019. Forensic Science International: Synergy 2: 416–428. DOI 10.1016/j. fsisyn.2020.01.011.
  9. Charzyński P., Plak A., Hanaka A., 2017. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research International 24: 4801–4811. DOI 10.1007/s11356-016-8209-5.
  10. Clausen J.L., Korte N., 2009. Environmental fate of tungsten from military use. Science of the Total Environment 407(8): 2887–2893. DOI 10.1016/j.scitotenv.2009.01.029.
  11. Czarnowska K., 1996. Total trace metals content of bedrock as geochemical background of soils. Soil Science Annual 47: 43–50.
  12. Denton G.R.W., Emborski C.A., Hachero A.A.B., Masga R.S., Starmer J.A., 2016. Impact of WWII dumpsites on Saipan (CNMI): Heavy metal status of soils and sediments. Environmental Science and Pollution Research 23: 11339–11348. DOI 10.1007/s11356-016-6603-7.
  13. Etim E.U., Onianwa P.C., 2012. Lead contamination of soil in the vicinity of a military shooting range in Ibadan, Nigeria. Toxicological & Environmental Chemistry 94(5): 895–905. DOI 10.1080/02772248.2012.678997.
  14. Gębka K., Bełdowski J., Bełdowska M., 2016. The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environmental Science and Pollution Research International 23(22): 23103–23113. DOI 10.1007/s11356-016-7436-0.
  15. Gillies J.A., kuhns H., Engelbrecht J.P., Uppapalli S., Etyemezian V., Nikolich G., 2007. Particulate emissions from U.S. Department of Defense artillery backblast testing. Journal of the Air & Waste Management Association (1995) 57(5): 551–560. DOI 10.3155/1047-3289.57.5.551.
  16. Gong Q., Deng J., Xiang Y., Wang Q., Yang L., 2008. Calculating pollution indices by trace metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences 19: 230–241. DOI 10.1016/S1002-0705(08)60042-4.
  17. Grechuta J., 2000. Grupa Badawcza Kriepost. Fortyfikacje Linii Mołotowa 1940-41. Fortyfikacje Rawskiego Rejonu Umocnionego – Linii Mołotowa, na południowym Roztoczu. Online: https://kriepost.org/index.php?option=com_ content&view=article&id=25:fortyfikacje-rawskiego-rejonu-umocnionego-linii-mootowa-na-poudniowym-roztoczu&catid=11&Itemid=5 (accessed 13 November 2023).
  18. Greičiūtė K., Juozulynas A., Šurkienė G., Valeikienė V., 2007. Research on soil disturbance and pollution with heavy metals in military grounds. Geologija 57: 14–20. NODOI.
  19. Håkanson L., 1980. An ecological risk index for aquatic. Pollution control: A sedimentological approach. Water Research 14: 975–1001. DOI 10.1016/0043-1354(80)90143-8.
  20. Hong S.T., Hyun J.H., 2014. The comparison of the relationship between the gunfire shot and its resulting heavy metal pollution rate. Journal of Soil and Groundwater Environment 19(6): 1–5. DOI 10.7857/jSGE.2014.19.6.001.
  21. Islam M.N., Nguyen X.P., Jung H.Y., Park J.H., 2016. Chemical speciation and quantitative evaluation of heavy metal pollution hazards in two army shooting range backstop soils. Bulletin of Environmental Contamination and Toxicology 96(2): 179–185. DOI 10.1007/s00128-015-1689-z.
  22. IUSS Working Group WRB, 2022. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps, 4th Edn. International Union of Soil Sciences (IUSS), Vienna, Austria.
  23. Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł, Musiał P., Musielok Ł, Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł, Waroszewski J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2): 71–97. DOI 10.2478/ssa-2019-0009.
  24. Kabata-Pendias A., 2010. Trace elements in soils and plants, 4th Edn. CRC Press. DOI 10.1201/b10158.
  25. Kis I.M., Karaica B., Medunic G., Romic M., Sabaric J., Balen D., Sostarko K., 2016. Soil, bark and leaf trace metal loads related to the war legacy (The Prasnik Rainforest, Croatia). Rudarsko-geološko-naftni zbornik 31: 13–28. DOI 10.17794/rgn.2016.2.2.
  26. Knechtenhofer L.A., Xifra I.O., Scheinost A.C., Flühler H., Kretzschmar R., 2003. Fate of trace metals in a strongly acidic shooting-range soil: Small-scale metal distribution and its relation to preferential water flow. Journal of Plant Nutrition and Soil Science 166(1): 84–92. DOI 10.1002/jpln.200390017.
  27. Kokorîte I., Kïaviòð M., Ðore J., Purmalis O., Zuèika A., 2008. Soil pollution with trace elements in territories of military grounds in Latvia. Proceedings of the Latvian Academy of Sciences. Section B 62(1/2): 27–33. DOI 10.2478/v10046-008-0010-5.
  28. Laporte-Saumure M., Martel R., Mercier G., 2011. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environmental Technology 32(7): 767–781. DOI 10.1080/09593330.2010.512298.
  29. Lawrence M.J., Stemberger H.L., Zolderdo A.J., Struthers D.P., Cooke S.J., 2015. The effects of modern war and military activities on biodiversity and the environment. Environmental Reviews 23(4): 443–460. DOI 10.1139/er-2015-0039.
  30. Magnuski K., Jaszcza R., 2008. Urządzanie lasu w Polsce po drugiej wojnie światowej w świetle źródłowych publikacji Sylwana. Część I. Okresy rozwoju urządzania lasu. Sylwan 6.
  31. Mander Ü, Kull A., Frey J., 2004. Residual cadmium and lead pollution at a former Soviet military airfield in Tartu, Estonia. In: Biogeochemical investigations of terrestrial, freshwater, and wetland ecosystems across the globe. Springer, Dordrecht: 591–606.
  32. Mazurek R., Kowalska j., Gąsiorek M., Zadrożny P., Józefowska A., Zaleski T., Kępka W., Tymczuk M., Orłowska k., 2017. Assessment of trace metals contamination in surface horizons of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 168: 839–850. DOI 10.1016/j.chemosphere.2016.10.126.
  33. Meerschman E., Cockx L., Islam M.M., Meeuws F., Van Meirvenne M., 2011. Geostatistical assessment of the impact of World War I on the spatial occurrence of soil trace metals. Ambio 40: 417–424. DOI 10.1007/s13280-010-0104-6.
  34. Migaszewski Z.M., Gałuszka A., 2007. Podstawy geochemii środowiska. Wydawnictwa Naukowo-Techniczne.
  35. Muller G., 1969. Index of geo-accumulation in sediments of the Rhine River. Geojournal 2: 108–118.
  36. Petrushka K., Petrushka I., Yukhman Y., 2023. Assessment of the impact of military actions on the soil cover at the explosion site by the Nemerov method and the Pearson coefficient: Case study of the city of Lviv. Journal of Ecological Engineering 24(10): 77–85. DOI 10.12911/22998993/170078.
  37. Pichtel J., 2012. Distribution and fate of military explosives and propellants in soil: A review. Applied and Environmental Soil Science 2012(1): 617236. DOI 10.1155/2012/617236.
  38. Plak A., Telecka M., Charzyński P., 2024. Evaluation of hazardous element accumulation in urban soils of Cracow, Lublin and Toruń (Poland): Pollution and ecological risk indices. Journal of Soils and Sediments 25: 510–532. DOI 10.1007/s11368-024-03864-0.
  39. Polakowski C., Makó A., Sochan A., Ryżak M., Zaleski T., Beczek M., Bieganowski A., 2023. Recommendations for soil sample preparation, pretreatment, and data conversion for texture classification in laser diffraction particle size analysis. Geoderma 430: 116358. DOI 10.1016/j.geoderma.2023.116358.
  40. Rodriguez-Seijo A., Alfaya C.M., Andrade-Couce M., Alonso Vega F., 2016. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils. Land Degradation & Development 27: 1721–1730. DOI 10.1002/ldr.2497.
  41. Rodríguez-Seijo A., Fernández-Calviño D., Arias-Estévez M., Arenas-Lago D., 2024. Effects of military training, warfare and civilian ammunition debris on the soil organisms: An ecotoxicological review. Biology and Fertility of Soils 60: 813–844. DOI 10.1007/s00374-024-01835-8.
  42. Ryu H., Han J., Jung J.W., Bae B., Nam K., 2007. Human health risk assessment of explosives and trace metals at a military gunnery range. Environmental Geochemistry and Health 29: 259–269. DOI 10.1007/s10653-007-9101-5.
  43. Ryżak M., Bieganowski A., 2011. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. Journal of Plant Nutrition and Soil Science 174: 624–633. DOI 10.1002/jpln.201000255.
  44. Sanderson P., Naidu R., Bolan N., Bowman M., Mclure S., 2012. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Science of the Total Environment 438: 452–462. DOI 10.1016/j.scitotenv.2012.08.014.
  45. Shi X., Wang J., 2013. Comparison of different methods for assessing heavy metal contamination in street dust of Xianyang City, NW China. Environmental Earth Sciences 68: 2409–2415. DOI 10.1007/s12665-012-1925-3.
  46. Short N., 2008. The Stalin and Molotov Lines. Soviet western defences 1928-41. Osprey Publishing, Oxford.
  47. Skalny A., Aschner M., Bobrovnitsky I.P., Chen P., Tsatsakis A., Paoliello M.M.B., Djordevic A.B., Tinkov A.A., 2021. Environmental and health hazards of military metal pollution. Environmental Research 201: 111568. DOI 10.1016/j. envres.2021.111568.
  48. Skwaryło-Bednarz B., 2007. Zawartość Pb, Cu, Zn w glebach otuliny Roztoczańskiego Parku Narodowego i terenów produkcyjnych do nich przyległych. Acta Agrophysica 10(1): 199–205. NODOI.
  49. Skwaryło-Bednarz B., Kwapisz M., Onuch J., krzepiłko A., 2014. Assessment of the content of trace metals and catalase activity in soils located in protected zone of the Roztocze National Park. Acta Agrophysica 21(3): 351–359. NODOI.
  50. Sladkova A., Szakova J., Havelcova M., Najmanova J., Tlustos P., 2015. The contents of selected risk elements and organic pollutants in soil and vegetation within a former military area. Soil and Sediment Contamination: An International Journal 24: 325–342. DOI 10.1080/15320383.2015.955605.
  51. Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł, Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2): 143–170. DOI 10.7163/GPol.0115.
  52. Splodytel A., Holubtsov O., Chumachenko S., Sorokina L., 2023. The impact of Russia’s war against Ukraine on the state of the country’s soil: Analysis results. Ecoaction – Centre for Environmental Initiatives.
  53. Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wroclaw– Warsaw.
  54. Thouin H., Le Forestier L., Gautret P., Hube D., Laperche V., Dupraz S., Battaglia-Brunet F., 2016. Characterization and mobility of arsenic and trace metals in soils polluted by the destruction of arsenic-containing shells from the Great War. Science of the Total Environment 550: 658–669. DOI 10.1016/J.scitotenv.2016.01.111.
  55. Tomic N.T., Smiljanic S., Jovic M., Gligoric M., Povrenovic D., Dosic A., 2018. Examining the effects of the destroying ammunition, mines, and explosive devices on the presence of trace metals in soil of open detonation pit: Part 1-pseudo-total concentration. Water, Air, & Soil Pollution 229: 301. DOI 10.1007/s11270-018-3957-0.
  56. Uziak S., Melke J., Klimowicz Z., 2004. Akumulacja i migracja metali ciężkich w glebach regionów fizjograficznych Polski Wschodniej. Annales Universitatis Mariae Curie-Skłodowska Lublin–Polonia Section B 59(10): 161–180. NODOI.
  57. van Meirvenne M., Meklit T., Verstraete S., De Boever M., Tack F., 2008. Could shelling in the First World War have increased copper concentrations in the soil around Ypres? European Journal of Soil Science 59: 372–379. DOI 10.1111/j.1365-2389.2007.01014.x.
  58. van Reeuwijk L.P., 2002. Procedures for soil analysis. Report No. 9. ISRIC, FAO, Rome.
  59. Weng H.X., Zhang X.M., Chen X.H., Wu N.Y., 2003. The stability of the relative content ratios of Cu, Pb and Zn in soils and sediments. Environmental Geology 45: 79–85. DOI 10.1007/s00254-003-0859-1.
  60. Baza Danych Obiektów Topograficznych (BDOT10k). Online: https://mapy.geoportal.gov.pl/wss/service/WMTS/guest/wmts/BDOT10k (accessed 13 December 2023).
  61. Mapa Szczegółowa Polski 1:100000. 1934. The Military Geographical Institute.
  62. Mapa Taktyczna Polski 1:100 000. 1955. The Military Geographical Institute (General Staff, Post-WW2).
  63. Zagury G.J., Bello J.A.R., Guney M., 2016. Valorization of a treated soil via amendments: Fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn. Environmental Monitoring and Assessment 188: 1–11. DOI 10.1007/s10661-016-5223-5.
  64. Zgłobicki W., 2008. Geochemiczny zapis działalności człowieka w osadach stokowych i rzecznych. Wydawnictwo UMCS, Lublin: 240.
  65. Zgłobicki W., 2013. Impact of microtopography on the geochemistry of soils within archaeological sites in SE Poland. Environmental Earth Sciences 70: 3085–3092. DOI 10.1007/s12665-013-2368-1.
  66. Zgłobicki W., Telecka M., Hałas P., Bis M., 2025. Impact of traffic and other sources on heavy metal pollution of urban soils (Lublin, Poland). Environmental Nanotechnology, Monitoring & Management 23: 101058. DOI 10.1016/j. enmm.2025.101058.
  67. Zhiyuan W., Dengfeng W., Huiping Z., Zhiping Q., 2011. Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences 10: 1946–1952. DOI 10.1016/j. proenv.2011.09.305.
DOI: https://doi.org/10.14746/quageo-2026-0002 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Submitted on: Aug 1, 2024
Published on: Oct 6, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Andrzej Plak, Grzegorz Gajek, Małgorzata Telecka, Paulina Hałas, Małgorzata Bis, Tomasz Szafran, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT