Anderson G., Klugmann D., 2014. A European lightning density analysis using 5 years of ATDnet data. Natural Hazards and Earth System Sciences 14: 815–829. DOI 10.5194/nhess-14-815-2014.
Betz H.D., Schmidt K., Laroche P., Blanchet P., Oettinger W.P., Defer E., Dziewit z., Konarski J., 2009. LINET – An international lightning detection network in Europe. Atmospheric Research 91: 564–573. DOI 10.1016/j.atmosres.2008.06.012.
Bielec-Bąkowska Z., 2003. Long-term variability of thunderstorm occurrence in Poland in the 20th century. Atmospheric Research 6(7–68): 35–52. DOI 10.1016/S0169-8095(03)00082-6.
Bruning E., MacGorman D., 2013. Theory and observations of controls on lightning flash size spectra. Journal of the Atmospheric Sciences 70(12): 4012–4029. DOI 10.1175/JAS-D-12-0289.1.
Changnon S.A., Changnon D., 2001. Long-term fluctuations in the thunderstorm activity in the United States. Climatic Change 50: 489–503. DOI 10.1023/A:1010651512934.
Curran E.B., Holle R.L., López R.E., 2000. Lightning casualties and damages in the United States from 1959 to 1994. Journal of Climate 13: 3448–3464. DOI10.1175/1520-0442(2000)013<3448:LCADIT>2.0.CO;2.
Diendorfer G., 2008. Some comments on the achievable accuracy of local ground flash density values. In: Proceedings of 29th International Conference on Lightning Protection. Uppsala: 2-8-1–2-8-6.
Dotzek N., Groenemeijer P.H., Feuerstein B., Holzer A.M., 2009. Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmospheric Research 93: 575–586. DOI 10.1016/j.atmosres.2008.10.020.
Feudale L., Manzato A., Micheletti S., 2013. A cloud-to-ground lightning climatology for north-eastern Italy. Advances in Science and Research 10: 77–84. DOI 10.5194/asr-10-77-2013.
Gajda W., 2021. System PERUN działa już 20 lat. Rola IMGW w Monitorowaniu Burz. IMGW-PIB/Centrum Hydrolo-giczno-Meteorologicznej Sieci Pomiarowo-Obserwacyjnej. Wydział Teledetekcji Naziemnej.
Groenemeijer P.H., Dotzek N., Stel F., Brooks H.E., Doswell C.A., III, Elsom D.M., Giaiotti D., Gilbert A., Holzer A., Meaden T., Salek M., Teittinen J., Behrendt J., 2004.ESWD – a standardized, flexible data format for severe weather reports. Preprints, Third European Conference on Severe Storms, León, Spain, European Severe Storms Laboratory. Online: www.researchgate.net/publication/224780785_ESWD__A_Standardized_Flexible_Data_Format_for_Severe_Weather_Reports(accessed 2.09.2024).
Kolendowicz L., 2006. The influence of synoptic situations on the occurrence of days with thunderstorms during a year in the territory of Poland. International Journal of Climatology 26: 1803–1820. DOI 10.1002/joc.1348.
Krider E.P., Noggle R.C., Pifer A.E., Vance D.L., 1980. Lightning direction-finding systems for forest fire detection. Bulletin of American Meteorological Society 61: 980–986. DOI10.1175/1520-0477(1980)061<0980:LDFSFF>2.0.CO;2.
Mäkelä A., Enno S.E., Haapalainen J., 2014. Nordic lightning information system: Thunderstorm climate of northern Europe for the period 2002–2011. Atmospheric Research 139: 46–61. DOI 10.1016/j.atmosres.2014.01.008.
MunichRe. 2019. NatCatSERVICE – The natural catastrophe loss database. Online: www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html (accessed 18 April 2025).
Nag A., Murphy M., Cummins K., Pifer A., Cramer J., 2014. Recent Evolution of the U.S. National Lightning Detection Network. In: 23rd International Lightning Detection Conference, 18–19 March 2014, 5th International Lightning Meteorology Conference, 20–21 March 2014, Tucson, Arizona, USA.
Poelman D., Schulz W., Diendorfer G., Bernardi M., 2016. The European lightning location system EUCLID – Part 2: Observations. Natural Hazards and Earth System Sciences 16(2): 607–616. DOI 10.5194/nhess-16-607-2016.
Pohjola H., Mäkelä A., 2013. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmospheric Research 123: 117–128. DOI 10.1016/j.atmosres.2012.10.019.
R Core Team, 2014: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online: www.R-project.org/(accessed 2.09.2024).
Schulz W., Cummins K., Diendorfer G., Dorninger M., 2005. Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. Journal of Geophysical Research 110: D09101. DOI10.1029/2004JD005332.
Sulik S., 2022. A cloud-to-ground lightning density due to progressing climate change in Poland. Environmental Challenges 9: 100597. DOI 10.1016/j.envc.2022.100597.
Taszarek M., Czernecki B., Kozioł a., 2015. A cloud-to-ground lightning climatology for Poland. Monthly Weather Review 143: 4285–4304. DOI 10.1175/MWR-D-15-0206.1.
Taszarek M., Allen J., Pucik T., Groenemeijer P.H, Czernecki B., Kolendowicz L., Lagouvardos K., Kotroni V., Schulz W., 2019. A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources. Journal of Climate 32.6: 1813-1837.
Wang B., Yang Y., Ding Q.-H., Murakami H., huang F., 2010. Climate control of the global tropical storm days (1965–2008). Geophysical Research Letters 37: L07704. 2010L077041of5. DOI 10.1029/2010GL042487.
Wapler K., 2013. High-resolution climatology of lightning characteristics within Central Europe. Meteorology and Atmospheric Physics 122: 175–184. DOI 10.1007/s00703-013-0285-1.