Have a personal or library account? Click to login
The Investigation of the Lake Water/Groundwater Interaction in the Hyporheic Zone of a Groundwater-Dependent Lake (Lake Płotki, Poland) Cover

The Investigation of the Lake Water/Groundwater Interaction in the Hyporheic Zone of a Groundwater-Dependent Lake (Lake Płotki, Poland)

Open Access
|Aug 2025

References

  1. Adamski Z., 2003. Mapa Hydrograficzna Polski w skali 1:50 000, Arkusz Krajenka. Główny Urząd Geodezji i Kartografii, Warsaw.
  2. Adrian R., O’Reilly C., Zagarese H., Baines S., Hessen D., Keller W., Livingstone D.M., Sommaruga R., Straile D., Van Donk E., Weyhenmeyer G., Winder M., 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297. DOI 10.4319/lo.2009.54.6_part_2.2283.
  3. Bartczak E., 2011. Szczegółowa Mapa geologiczna Polski 1:50 000, arkusz Krajenka nr 0275. Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warsaw.
  4. Battin T.J., Kaplan L.A., Newbold J.D., Hendricks S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biology 48: 995–1014. DOI 10.1046/j.1365-2427.2003.01062.x.
  5. Boano F., Harvey J.W., Marion A., Packman A.I., Revelli R., Ridolfi L., Wörman A., 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52: 603–679. DOI 10.1002/2012RG000417.
  6. Boulton A.J., Findlay S., Marmonier P., Stanley E.H., Vallett H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecological, Evolution, and Systematics 29: 59–81. DOI 10.1146/an-nurev.ecolsys.29.1.59.
  7. Busato L., Boaga J., Perri M., Majone B., Bellin A., Cassiani G., 2019. Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study. The Science of the Total Environment 648: 1105–1120. DOI 10.1016/j.scitotenv.2018.08.179.
  8. Chaudhari S., Felfelani F., Shin S., Pokhrel Y., 2018. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology 560: 342–353. DOI 10.1016/j.jhy-drol.2018.03.034.
  9. Chmal R., 2006. Szczegółowa Mapa geologiczna Polski 1:50 000, arkusz Krajenka nr 0275. Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warsaw.
  10. Choiński A., 2006. Katalog jezior Polski (Catalogue of Polish lakes). Wydawnictwa Naukowe UAM, Poznań.
  11. Choiński A., Jańczak J., Ptak M., 2020. Wahania poziomów wody jezior w Polsce w latach 1956–2015 (Water-level fluctuations in Polish lakes in the 1956-2015 period). Przegląd Geograficzny 92(1): 41–54. DOI 10.7163/PrzG.2020.1.3.
  12. Dobracka E., Lewandowski J., 2002. Strefa marginalna fazy pomorskiej lobu Parsęty (Pomorze Środkowe). In: Dobracki R., Lewandowski J., Zielinski T. (eds), Plejstocen Pomorza Środkowego i strefa marginalna lobu Parsęty-IX Konferencja Stratygrafia plejstocenu Polski. Państw. Inst. Geol. Oddz. Pom. w Szczecinie i Uniwersytet Śląski, Sosnowiec: 109–121.
  13. European Commission: Directorate-General for Environment, Ecosystems Ltd, Sundseth K., 2015. The EU birds and habitats directives – For nature and people in Europe. Publications Office. Online: data.europa.eu/doi/10.2779/49288 (accessed 10 April 2024).
  14. Fathian F., Vaheddoost B., 2021. Modeling the volatility changes in Lake Urmia water level time series. Theoretical and Applied Climatology 143: 61–72. DOI 10.1007/s00704-020-03417-8.
  15. Fetter C.W., 1994. Applied hydrogeology, 3rd Edn. Macmillan College Publishing Company Inc., New York.
  16. Fluet-Chouinard E., Messager M.L., Lehner B., Finlayson C.M., 2017. Freshwater lakes and reservoirs. In: Finlayson C., Milton G.R., Prentice R., Davidson N. (eds), The wetland book. Springer, Dordrecht:125–141. DOI 10.1007/978-94-007-4001-3.
  17. Geoportal, 2024. [Geoportal for spatial information infrastructure]. In: the 2022 Numerical Terrain Model. Online: https://mapy.geoportal.gov.pl/wss/service/PZGIK/NMT/WMS/SkorowidzeUkladEVRF2007 (accessed 25 June 2025).
  18. Gregosiewicz R., Włostowski J., Góralska M., 2017. Baza danych GIS Mapy hydrogeologicznej Polski 1:50 000, Pierwszy poziom wodonośny występowanie i hydrodynamika, arkusz Krajenka nr 0275. Państwowy Instytut Geologiczny, Warsaw.
  19. Jamorska I., Kubiak-Wójcicka K., Krawiec A., 2019. Dynamics of the status of groundwater in the Polish Lowland: The river Gwda catchment example. Geologos 25(3): 193–204. DOI 10.2478/logos-2019-0021.
  20. Jańczak J. (ed.), 1996. Atlas jezior Polski Tom 1. Bogucki Wydawnictwo Naukowe, Poznań.
  21. Jiang W., Dai Z., Mei X., Long C., Binh N.A., Van C.M., Cheng J., 2024. Profiling dynamics of the Southeast Asia’s largest lake, Tonle Sap Lake. The Science of the Total Environment 917: 170444. DOI 10.1016/j.scitotenv.2024.170444.
  22. Journal of Laws, 2023. Regulation of the Minister of Climate and Environment of 9 October 2023 on the special habitat protection area Ostoja Pilska (PLH300045). Journal of Laws 2023, item 2290. Online: isap.sejm.gov.pl/isap.nsf/DocDetails. xsp?id=WDU20230002290 (accessed 10 April 2024).
  23. Keim C., Mehler F., Wolf T., Gilfedder B., 2019. Mapping spatial patterns of groundwater discharge in a deep lake using high-resolution temperature sensors. Inland Waters 9: 334–344. DOI 10.1080/20442041.2019.1609859.
  24. Kidmose J., Engesgaard P., Nilsson B., Laier T., Looms M.C., 2011. Spatial distribution of seepage at a flow-through lake: Lake Hampen, western Denmark. Vadose Zone Journal 10(1): 110-124. DOI 10.2136/vzj2010.0017.
  25. Kotowski T., Kachnic M., 2016. The geochemical study of groundwaters from Cenozoic aquifers in the Gwda catchment (Western Pomerania, Poland). Environmental Earth Sciences 75: 192. DOI 10.1007/s12665-015-4962-x.
  26. Kotowski T., Najman J., Nowobilska-Luberda A., Bergel T., Kaczor G., 2023. Analysis of the interaction between surface water and groundwater using gaseous tracers in a dynamic test at a riverbank filtration intake. Hydrological Processes 37(4): 14862. DOI 10.1002/hyp.14862.
  27. Kowalczak P., Graczyk D., Głowski P., Józefczyk D., 2014. Koncepcja powstrzymania degradacji sieci hydrogra-ficznej kompleksu jezior Okoniowe-Płotki-Jeleniowe-Bagienne w Pile oraz przyległych obszarów wodno-błotnych. Kunke poligrafia Sp. z o.o., Inowrocław.
  28. Liu B., Li Y., Jiang W., Chen J., Shu L., Liu J., 2022. Understanding groundwater behaviors and exchange dynamics in a linked catchment-floodplain-lake system. The Science of the Total Environment 853: 158558. DOI 10.1016/j. scitotenv.2022.158558.
  29. Marciniak M., Chudziak Ł, 2015. A new method of measuring the hydraulic conductivity of the bottom sediment. Przegląd Geologiczny 63: 919–925.
  30. Marciniak M., Ziulkiewicz M., Górecki M., 2022. Variability of water exchange in the hyporheic zone of a lowland river in Poland based on gradientometric studies. Quaestiones Geographicae 41: 141–156. DOI 10.2478/quageo-2022-0030.
  31. Marttila H., Tammela S., Mustonen K.R., Louhi P., Muotka T., Mykrä H., Kløve B., 2019. Contribution of flow conditions and sand addition on hyporheic zone exchange in gravel beds. Hydrology Research 50(3): 878-885. DOI 10.2166/nh.2019.099.
  32. Marzadri A., Tonina D., Bellin A., Valli A., 2016. Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources 88: 139-151. DOI 10.1016/j.advwatres.2015.12.014.
  33. Mugnai R., Messana G., Di Lorenzo T., 2015. The hyporheic zone and its functions: Revision and research status in Neotropical regions. Brazilian Journal of Biology 75(3): 524–534. DOI 10.1590/1519-6984.15413.
  34. Nield S., Townley L., Barr A., 1994. A framework for quantitative analysis of surface water-groundwater interaction: Flow geometry in a vertical section. Water Resources Research 30: 2461–2475. DOI 10.1029/94WR00796.
  35. Nowak B., Ptak M., 2018. Potential use of lakes as a component of small retention in Wielkopolska. E3S Web of Conferences 44: 00127. DOI 10.1051/e3sconf/20184400127n.
  36. Owsianny P.M., Gąbka M., 2009. Rynna Jezior Kuźnickich (w tym rezerwat przyrody „Kuźnik”)-cenny fragment specjalnego obszaru ochrony siedlisk Natura 2000 „Ostoja Pilska”. In: Owsianny P.M. (ed.), Rynna Jezior Kuźnickich i rezerwat przyrody Kuźnik-bioróżnorodność, funkcjonowanie, ochrona i edukacja. The Stanislaw Staszic Museum, Piła: 5–23.
  37. Packman A.I., Salehin M., 2003. Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494: 291–297. DOI 10.1023/A:1025403424063.
  38. Paule-Mercado M.C., Rabaneda-Bueno R., Porcal P., Kopacek M., Huneau F., Vystavna Y., 2024. Climate and land use shape the water balance and water quality in selected European lakes. Scientific Reports 14:8049. DOI 10.1038/s41598-024-58401-3.
  39. PIG-PIB [Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy], 2024. Rocznik Hydrogeologiczny Państwowej Służby Geologicznej. Online: www.pgi.gov.pl/psh/materialy-informacyjne-psh/rocznik-hydrogeolog-iczny-psh.html/(accessed 10 April 2024).
  40. Rautio A., Korkka-Niemi K., 2015. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. Hydrogeology Journal 23: 687-705. DOI 10.1007/s10040-015-1234-5.
  41. Roche K.R., Blois G., Best J.L., Christensen K.T., Aubeneau A.F., Packman A.I., 2018. Turbulence links momentum and solute exchange in coarse-grained streambeds. Water Resources Research 54: 3225–3242. DOI 10.1029/2017WR021992.
  42. Rudnick S., Lewandowski J., Nützmann G., 2015. Investigating groundwater-lake interactions by hydraulic heads and a water balance. Ground Water 53: 227–237. DOI 10.1111/gwat.12208.
  43. Santos Correa W., Yoshinaga Pereira S., Bernardes Ayer J.E., Brum Pereira P.R., 2022. Hydrogeochemical evaluation of groundwater and surface water interactions in an alluvial plain, Southeast Brazil. Land Degradation and Development 33: 2911-2931. DOI 10.1002/ldr.4364.
  44. Schulz S., Darehshouri S., Hassanzadeh E., Tajrishy M., Schüth C., 2020. Climate change or irrigated agriculture – What drives the water level decline of Lake Urmia. Scientific Reports 10:236. DOI 10.1038/s41598-019-57150-y.
  45. Smith J., 2005. Groundwater–surface water interactions in the hyporheic zone. Science Report SC030155/SR1. Environment Agency, Bristol.
  46. Smith A.J., Townley L.R., 2002. Influence of regional setting on the interaction between shallow lakes and aquifers. Water Resources Research 38(9): 1171. DOI 10.1029/2001WR000781.
  47. Sojka M., Choinski A., Ptak M., Kanecka-Geszke E., Zhu S., Strzelinski P., 2022. Detection of lake shoreline active zones and water volume changes using digital lake bottom model and water level fluctuations. Geocarto International 37: 13711–13733. DOI 10.1080/10106049.2022.2082553.
  48. Song J., Jiang W., Xu S., Zhang G., Wang L., Wen M., Zhang B., Wang Y., Long Y., 2016. Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China. Hydrogeology Journal 24: 2049–2062. DOI 10.1007/s10040-016-1449-0.
  49. Soria J., Apostolova N., 2022. Decrease in the water level of Lake Prespa (North Macedonia) studied by remote sensing methodology: Relation with hydrology and agriculture. Hydrology 9(6):99. DOI 10.3390/hydrology9060099.
  50. Swanson T.E., Bayani Cardenas M., 2010. Diel heat transport within the hyporheic zone of a pool–riffle–pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnology and Oceanography 55(4): 1741–1754. DOI 10.4319/lo.2010.55.4.1741.
  51. Timoney K.P., 2024. Climate change has driven multidecadal declines in lake levels in central Alberta, Canada. Lake and Reservoir Management 40: 205–220. DOI 10.1080/10402381.2024.2323483.
  52. Tonina D., Buffington J.M., 2007. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resources Research 43: 01421. DOI 10.1029/2005WR004328.
  53. Townley L.R., Trefry M.G., 2000. Surface water–groundwater interaction near shallow circular lakes: Flow geometry in three dimensions. Water Resources Research 36: 935-–. DOI 10.1029/1999WR900304.
  54. Winter T.C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal 7: 28–45. DOI 10.1007/s100400050178.
  55. Woolway R.I., Kraemer B.M., Lenters J.D., Merchant C.J., O’Reilly C.M., Sharma S., 2020. Global lake responses to climate change. Nature Reviews Earth and Environment 1: 388–403. DOI 10.1038/s43017-020-0067-5.
  56. Wrzesiński D., Ptak M., 2016. Water level changes in Polish lakes during 1976-2010. Journal of Geographical Sciences 26: 83–101. DOI 10.1007/s11442-016-1256-5.
  57. Wu H., Wang S., Wu T., Yao B., Ni Z., 2021. Assessing the influence of compounding factors to the water level variation of Erhai Lake. Water 13(1): 29. DOI 10.3390/w13010029.
  58. Yao F., Livneh B., Rajagopalan B., Wang J., Crétaux J., Wada Y., Berge-Nguyen M., 2023. Satellites reveal widespread decline in global lake water storage. Science 380: 743–749. DOI 10.1126/science.abo2812.
DOI: https://doi.org/10.14746/quageo-2025-0025 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 111 - 122
Submitted on: Mar 5, 2025
Published on: Aug 24, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Magdalena Matusiak, Marek Marciniak, Paweł Owsianny, Krzysztof Dragon, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.