Have a personal or library account? Click to login
Comparison of Curvilinear Parametrization Methods and Avoidance of Orthogonal Singularities in the Path Following Task Cover

Comparison of Curvilinear Parametrization Methods and Avoidance of Orthogonal Singularities in the Path Following Task

By: Filip Dyba and  Alicja Mazur  
Open Access
|Mar 2024

References

  1. R. L. Bishop. “There is more than one way to frame a curve,” The American Mathematical Monthly, vol. 82, no. 3, 1975, pp. 246–251.
  2. M. Breivik, and T. Fossen. “Principles of guidance-based path following in 2D and 3D,” Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005, pp. 627–634; doi: 10.1109/CDC.2005.1582226.
  3. C. Canudas de Wit, G. Bastin, and B. Siciliano, Theory of Robot Control, Springer-Verlag: London, 1996.
  4. D. Carroll, E. Köse, and I. Sterling. “Improving Frenet’s Frame Using Bishop’s Frame,” Journal of Mathematics Research, vol. 5, 2013, pp. 97–106; doi: 10.5539/jmr.v5n4p97.
  5. L. Consolini, M. Maggiore, C. Nielsen, and M. Tosques. “Path following for the PVTOL aircraft,” Automatica, vol. 46, no. 8, 2010, pp. 1284–1296; doi: 10.1016/j.automatica.2010.05.014.
  6. F. Dyba, and A. Mazur. “Comparison of Curvilinear Methods in Path Following Task for a Holonomic Manipulator,” A. Mazur and C. Zieliński, eds., Advances in Robotics, vol. 1, Warsaw University of Technology Publishing House, 2022, pp. 33–44, (in Polish).
  7. P. Encarnacao, and A. Pascoal. “3D path following for autonomous underwater vehicle,” Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, 2000, pp. 2977–2982; doi: 10.1109/CDC.2000.914272.
  8. F. Frenet. “Sur les courbes à double courbure,” Journal de Mathématiques Pures et Appliquées, 1852, pp. 437–447.
  9. M. Galicki. “Adaptive Control of Kinematically Redundant Manipulator along a Prescribed Geometric Path,” K. Kozłowski, ed., Robot Motion and Control. Lecture Notes in Control and Information Sciences, vol. 335, Springer, 2006, pp. 129–139.
  10. A. J. Hanson, and H. Ma, Parallel Transport Approach to Curve Framing. Technical report, Indiana University, 1995.
  11. N. Hung et al. “A review of path following control strategies for autonomous robotic vehicles: Theory, simulations, and experiments,” Journal of Field Robotics, vol. 40, no. 3, 2023, pp. 747–779; doi: 10.1002/rob.22142.
  12. M. Krstić, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., 1995.
  13. X. Li, G. Zhao, and B. Li. “Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments,” Applied Mathematical Modelling, vol. 85, 2020, pp. 210–230.
  14. Y.-L. Liao, M.-J. Zhang, and L. Wan. “Serret−Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties,” Journal of Central South University, vol. 22, 2015, pp. 214–223.
  15. U. Libal, and J. Płaskonka. “Noise sensitivity of selected kinematic path following controllers for a unicycle,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 62, no. 1, 2014, pp. 3 – 13; doi: 10.2478/bpasts-2014-0001.
  16. H. Liu, and D. Pei. “Singularities of a space curve according to the relatively parallel adapted frame and its visualization,” Mathematical Problems in Engineering, 2013; doi: 10.1155/2013/512020.
  17. I. Lugo-Cárdenas, S. Salazar, and R. Lozano. “Lyapunov Based 3D Path Following Kinematic Controller for a Fixed Wing UAV,” IFAC-PapersOnLine, vol. 50, no. 1, 2017, pp. 15946–15951; doi: 10.1016/j.ifacol.2017.08.1747, 20th IFAC World Congress.
  18. A. Mazur. “Hybrid adaptive control laws solving a path following problem for non-holonomic mobile manipulators,” International Journal of Control, vol. 77, no. 15, 2004, pp. 1297–1306; doi: 10.1080/0020717042000297162.
  19. A. Mazur. Model-based control for non-holonomic mobile manipulators, Publishing House of Wroclaw University of Science and Technology, 2009, (in Polish).
  20. A. Mazur, J. Płaskonka, and M. Kaczmarek. “Following 3D paths by a manipulator,” Archives of Control Sciences, vol. 25, no. 1, 2015, pp. 117–133; doi: 10.1515/acsc-2015-0008.
  21. A. Mazur, and D. Szakiel. “On path following control of nonholonomic mobile manipulators,” International Journal of Applied Mathematics and Computer Science, vol. 19, no. 4, 2009, pp. 561–574.
  22. A. Micaelli, and C. Samson. “Trajectory tracking for unicycle-type and two-steering-wheels mobile robots,” Technical Report No. 2097, Sophia-Antipolis, 1993.
  23. M. M. Michałek, and D. Pazderski, Mobile robots control. Laboratory, Publishing House of Poznan University of Technology, 2012, (in Polish).
  24. M. M. Michałek. “A highly scalable path-following controller for N-trailers with off-axle hitching,” Control Engineering Practice, vol. 29, 2014, pp. 61–73; doi: 10.1016/j.conengprac.2014.04.001.
  25. M. M. Michałek, and T. Gawron. “VFO path following control with guarantees of positionally constrained transients for unicycle-like robots with constrained control input,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 89, no. 1-2, 2018, pp. 191–210; doi: 10.1007/s10846-017-0482-0.
  26. A. Morro, A. Sgorbissa, and R. Zaccaria. “Path following for unicycle robots with an arbitrary path curvature,” IEEE Transactions on Robotics, vol. 27, no. 5, 2011, pp. 1016–1023; doi: 10.1109/TRO.2011.2148250.
  27. J. Oprea. Differential Geometry and Its Applications, Prentice Hall, 2007.
  28. J. Płaskonka. “Different kinematic path following controllers for a wheeled mobile robot of (2,0) type,” Journal of Intelligent & Robotic Systems, vol. 77, 2013, pp. 481–498; doi: 10.1007/s10846-013-9879-6.
  29. M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed. “Review and performance evaluation of path tracking controllers of autonomous vehicles,” IET Intelligent Transport Systems, vol. 15, no. 5, 2021, pp. 646–670; doi: 10.1049/itr2.12051.
  30. J. M. Selig, and Y. Wu. “Interpolated rigidbody motions and robotics,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 1086–1091; doi: 10.1109/IROS.2006.281815.
  31. J.-A. Serret. “Sur quelques formules relatives à la théorie des courbes à double courbure,” Journal de Mathématiques Pures et Appliquées, 1851, pp. 193–207.
  32. B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, Springer, 2008.
  33. D. Soetanto, L. Lapierre, and A. Pascoal. “Adaptive, non-singular path-following control of dynamic wheeled robots,” Proceedings of the IEEE Conference on Decision and Control, IEEE, 2003, pp. 1765–1770; doi: 10.1109/CDC.2003.1272868.
  34. K. Tchoń, A. Mazur, I. Dulęba, R. Hossa, and R. Muszyński, Manipulators and Mobile Robots: Models, Motion Planning, Control, Academic Publishing House PLJ, 2000, (in Polish).
DOI: https://doi.org/10.14313/jamris/3-2023/22 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 46 - 64
Submitted on: Jan 8, 2023
Accepted on: Jun 6, 2023
Published on: Mar 4, 2024
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Filip Dyba, Alicja Mazur, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.