References
- R. L. Bishop. “There is more than one way to frame a curve,” The American Mathematical Monthly, vol. 82, no. 3, 1975, pp. 246–251.
- M. Breivik, and T. Fossen. “Principles of guidance-based path following in 2D and 3D,” Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005, pp. 627–634; doi: 10.1109/CDC.2005.1582226.
- C. Canudas de Wit, G. Bastin, and B. Siciliano, Theory of Robot Control, Springer-Verlag: London, 1996.
- D. Carroll, E. Köse, and I. Sterling. “Improving Frenet’s Frame Using Bishop’s Frame,” Journal of Mathematics Research, vol. 5, 2013, pp. 97–106; doi: 10.5539/jmr.v5n4p97.
- L. Consolini, M. Maggiore, C. Nielsen, and M. Tosques. “Path following for the PVTOL aircraft,” Automatica, vol. 46, no. 8, 2010, pp. 1284–1296; doi: 10.1016/j.automatica.2010.05.014.
- F. Dyba, and A. Mazur. “Comparison of Curvilinear Methods in Path Following Task for a Holonomic Manipulator,” A. Mazur and C. Zieliński, eds., Advances in Robotics, vol. 1, Warsaw University of Technology Publishing House, 2022, pp. 33–44, (in Polish).
- P. Encarnacao, and A. Pascoal. “3D path following for autonomous underwater vehicle,” Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, 2000, pp. 2977–2982; doi: 10.1109/CDC.2000.914272.
- F. Frenet. “Sur les courbes à double courbure,” Journal de Mathématiques Pures et Appliquées, 1852, pp. 437–447.
- M. Galicki. “Adaptive Control of Kinematically Redundant Manipulator along a Prescribed Geometric Path,” K. Kozłowski, ed., Robot Motion and Control. Lecture Notes in Control and Information Sciences, vol. 335, Springer, 2006, pp. 129–139.
- A. J. Hanson, and H. Ma, Parallel Transport Approach to Curve Framing. Technical report, Indiana University, 1995.
- N. Hung et al. “A review of path following control strategies for autonomous robotic vehicles: Theory, simulations, and experiments,” Journal of Field Robotics, vol. 40, no. 3, 2023, pp. 747–779; doi: 10.1002/rob.22142.
- M. Krstić, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., 1995.
- X. Li, G. Zhao, and B. Li. “Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments,” Applied Mathematical Modelling, vol. 85, 2020, pp. 210–230.
- Y.-L. Liao, M.-J. Zhang, and L. Wan. “Serret−Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties,” Journal of Central South University, vol. 22, 2015, pp. 214–223.
- U. Libal, and J. Płaskonka. “Noise sensitivity of selected kinematic path following controllers for a unicycle,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 62, no. 1, 2014, pp. 3 – 13; doi: 10.2478/bpasts-2014-0001.
- H. Liu, and D. Pei. “Singularities of a space curve according to the relatively parallel adapted frame and its visualization,” Mathematical Problems in Engineering, 2013; doi: 10.1155/2013/512020.
- I. Lugo-Cárdenas, S. Salazar, and R. Lozano. “Lyapunov Based 3D Path Following Kinematic Controller for a Fixed Wing UAV,” IFAC-PapersOnLine, vol. 50, no. 1, 2017, pp. 15946–15951; doi: 10.1016/j.ifacol.2017.08.1747, 20th IFAC World Congress.
- A. Mazur. “Hybrid adaptive control laws solving a path following problem for non-holonomic mobile manipulators,” International Journal of Control, vol. 77, no. 15, 2004, pp. 1297–1306; doi: 10.1080/0020717042000297162.
- A. Mazur. Model-based control for non-holonomic mobile manipulators, Publishing House of Wroclaw University of Science and Technology, 2009, (in Polish).
- A. Mazur, J. Płaskonka, and M. Kaczmarek. “Following 3D paths by a manipulator,” Archives of Control Sciences, vol. 25, no. 1, 2015, pp. 117–133; doi: 10.1515/acsc-2015-0008.
- A. Mazur, and D. Szakiel. “On path following control of nonholonomic mobile manipulators,” International Journal of Applied Mathematics and Computer Science, vol. 19, no. 4, 2009, pp. 561–574.
- A. Micaelli, and C. Samson. “Trajectory tracking for unicycle-type and two-steering-wheels mobile robots,” Technical Report No. 2097, Sophia-Antipolis, 1993.
- M. M. Michałek, and D. Pazderski, Mobile robots control. Laboratory, Publishing House of Poznan University of Technology, 2012, (in Polish).
- M. M. Michałek. “A highly scalable path-following controller for N-trailers with off-axle hitching,” Control Engineering Practice, vol. 29, 2014, pp. 61–73; doi: 10.1016/j.conengprac.2014.04.001.
- M. M. Michałek, and T. Gawron. “VFO path following control with guarantees of positionally constrained transients for unicycle-like robots with constrained control input,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 89, no. 1-2, 2018, pp. 191–210; doi: 10.1007/s10846-017-0482-0.
- A. Morro, A. Sgorbissa, and R. Zaccaria. “Path following for unicycle robots with an arbitrary path curvature,” IEEE Transactions on Robotics, vol. 27, no. 5, 2011, pp. 1016–1023; doi: 10.1109/TRO.2011.2148250.
- J. Oprea. Differential Geometry and Its Applications, Prentice Hall, 2007.
- J. Płaskonka. “Different kinematic path following controllers for a wheeled mobile robot of (2,0) type,” Journal of Intelligent & Robotic Systems, vol. 77, 2013, pp. 481–498; doi: 10.1007/s10846-013-9879-6.
- M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed. “Review and performance evaluation of path tracking controllers of autonomous vehicles,” IET Intelligent Transport Systems, vol. 15, no. 5, 2021, pp. 646–670; doi: 10.1049/itr2.12051.
- J. M. Selig, and Y. Wu. “Interpolated rigidbody motions and robotics,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 1086–1091; doi: 10.1109/IROS.2006.281815.
- J.-A. Serret. “Sur quelques formules relatives à la théorie des courbes à double courbure,” Journal de Mathématiques Pures et Appliquées, 1851, pp. 193–207.
- B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, Springer, 2008.
- D. Soetanto, L. Lapierre, and A. Pascoal. “Adaptive, non-singular path-following control of dynamic wheeled robots,” Proceedings of the IEEE Conference on Decision and Control, IEEE, 2003, pp. 1765–1770; doi: 10.1109/CDC.2003.1272868.
- K. Tchoń, A. Mazur, I. Dulęba, R. Hossa, and R. Muszyński, Manipulators and Mobile Robots: Models, Motion Planning, Control, Academic Publishing House PLJ, 2000, (in Polish).
