Have a personal or library account? Click to login
Singularity-Robust Inverse Kinematics for Serial Manipulators Cover
By: Ignacy Dulęba  
Open Access
|Mar 2024

References

  1. W. Cheney, and D. Kincaid, Linear Algebra: Theory and Applications, Jones & Bartlett Publ., 2009.
  2. I. Dulęba. “Robust inverse kinematics at singular configurations,” A. Mazur and C. Zieliński, eds., Advances in Robotics, vol. 197 of Electronics, pp. 5–10. Publ. House of the Warsaw Univ. of Technology, 2022 (in Polish).
  3. I. Duleba. “A comparison of jacobian-based methods of inverse kinematics for serial robot manipulators,” Int. Journal of Applied Mathematics and Computer Science, vol. 23, no. 2, 2013, pp. 373–382.
  4. I. Duleba. “Channel algorithm of transversal passing through singularities for non-redundant robot manipulators,” IEEE Int. Conf. on Robotics and Automation, vol. 2, 2000, pp. 1302–1307; doi: 10.1109/ROBOT.2000.844778.
  5. G. Golub, and C. Reinsch. “Singular value decomposition and least squares solutions,” Numerische Mathematik, vol. 14, no. 5, 1970, pp. 403–420.
  6. B. Grossmann. “The product of two symmetric, positive semidefinite matrices has non-negative eigenvalues”. Mathematics Stack Exchange; https://math.stackexchange.com/q/982822 (version: 2014-10-21).
  7. R. Horn, and C. Johnson, Matrix analysis, Cambridge Univ. Press, 2012.
  8. C.-G. Kang. “Online trajectory planning for a PUMA robot,” Int. Journal of Precision Enginnering and Manufacturing, vol. 8, no. 4, 2007, pp. 16–21.
  9. S. Lloyd, R. A. Irani, and M. Ahmadi. “Fast and robust inverse kinematics of serial robots using Halley’s method,” IEEE Transactions on Robotics, vol. 38, no. 5, 2022, pp. 2768–2780; doi: 10.1109/TRO.2022.3162954.
  10. A. A. Maciejewski, and C. Klein. “The singular value decomposition: Computation and applications to robotics,” Int. Journal of Robotics Research, vol. 8, 1989, pp. 63–79.
  11. Y. Nakamura, Advanced Robotics: Redundancy and Optimization, Addison-Wesley, 1991.
  12. A. Ratajczak, J. Ratajczak, and K. Tchoń. “Taskpriority motion planning of underactuated systems: an endogenous configuration space approach,” Robotica, vol. 28, no. 6, 2010, pp. 885–892.
  13. M. Spong, and M. Vidyasagar, Robot Dynamics and Control, MIT Press, 1989.
  14. J. Sun, Y. Liu, and C. Ji. “Improved singular robust inverse solutions of redundant serial manipulators,” Int. Journal of Advanced Robotic Systems, vol. 17, no. 3, 2020, pp. 1–12; doi: 10.1177/1729881420932046.
  15. K. Tchoń, and J. Ratajczak. “Singularities of holonomic and non-holonomic robotic systems: a normal form approach,” Journal of the Franklin Institute, vol. 358, no. 15, 2021, pp. 7698–7713.
  16. L. V. Vargas, A. C. Leite, and R. R. Costa. “Overcoming kinematic singularities with the filtered inverse approach”, IFAC Proceedings Volumes, vol. 47, no. 3, 2014, pp. 8496–8502; doi: 10.3182/20140824-6-ZA-1003.01841, 19th IFAC World Congress.
DOI: https://doi.org/10.14313/jamris/3-2023/21 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 38 - 45
Submitted on: Dec 4, 2022
|
Accepted on: Apr 21, 2023
|
Published on: Mar 4, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Ignacy Dulęba, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.