Have a personal or library account? Click to login
Inverse Kinematics Model for a 18 Degrees of Freedom Robot Cover

References

  1. J. Fierro, J. A. Pámanes, V. Santibanez, G. Ruiz and J. Ollervides. “Condiciones para una marcha elemental del robot NAO,” AMRob Journal, Robotics: Theory and Applications, no. 4(1), pp. 13–18, 2014.
  2. S. Bertrand, O. Bruneau, F. B. Ouezdou and S. Alfayad. “Closed-form solutions of inverse kinematic models for the control of a biped robot with 8 active degrees of freedom per leg,” Mechanism and Machine Theory, vol. 49, pp. 117–140, 2012, doi: 10.1016/j.mechmachtheory. 2011.10.014.
  3. O. Ruiz, Análisis cinemático y dinámico de un robot bípedo de 12 GDL internos utilizando la formulación Newton-Euler, Universidad Nacional Autónoma de México, México: MS Thesis, 2014.
  4. J. Zhang, Z. Yuan, S. Dong, M. T. Sadiq, F. Zhang and J. Li. “Structural design and kinematics simulation of hydraulic biped robot,” Applied Sciences, vol. 10, no. 18, p. 6377, 2020, doi: 10.3390/ app10186377.
  5. J. Che, Y. Pan, W. Yan and J. Yu. “Kinematics Analysis of Leg Configuration of An Ostrich Bionic Biped Robot,” International Conference on Robotics and Control Engineering, pp. 19–22, 2021, doi: 10.1145/3462648.3462652.
  6. Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J. K. Huang and J. Grizzle. “Feedback control of a cassie bipedal robot: Walking, standing, and riding a segway,” In 2019 American Control Conference (ACC), pp. 4559–4566, 2019, doi: 10.23919/ACC.2019.8814833.
  7. J. Che, Y. Pan, W. Yan and J. Yu. “Leg Configuration Analysis and Prototype Design of Biped Robot Based on Spring Mass Model,” In Actuators, vol. 11, no. 3, p. 75, 2022, doi: 10.3390/act11030075.
  8. Y. Hu, X. Wu, H. Ding, K. Li, J. Li and J. Pang. “Study of Series-parallel Mechanism Used in Legs of Biped Robot,” 7th International Conference on Control, Automation and Robotics (ICCAR), pp. 97–102, 2021, doi: 10.1109/ICCAR52225. 2021.9463499.
  9. E. Yılmazlar and H. Kuşçu. “Walking pattern generation and control for a bipedal robot,” Machines. Technologies. Materials, vol. 15, no. 3, pp. 99–102, 2021.
  10. T. D. Huy, N. C. Cuong and N. T. Phuong. “Control of biped robot with stable walking,” American Journal of Engineering Research (AJER), vol. 2, pp. 129–150, 2013.
  11. D. Bharadwaj and M. Prateek. “Kinematics and dynamics of lower body of autonomous humanoid biped robot,” International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8(4), pp. 141–146, 2019.
  12. K. Cherfouh, J. Gu, U. Farooq, M. U. Asad, R. Dey and V. E. Balas. “Bilateral Teleoperation Control of a Bipedal Robot Gait Using a Manipulator,” IFAC-PapersOnLine, vol. 55, no. 1, pp. 765–770, 2022, doi: 10.1016/j.ifacol.2022.04.125.
  13. D. A. a. A. Vivas. “Modelado y control de un robot bípedo de nueve grados de libertad,” In VIII Congreso de la Asociación Colombiana de Automática, 2009.
  14. S. Kajita, H. Hirukawa, K. Harada and K. Yokoi. “Kinematics,” in Introduction to humanoid robotics, Springer Berlin Heidelberg, 2014, pp. 19–67, doi: 10.1007/978-3-642-54536-8.
  15. E. H. Franco and R. V. Guerrero. “Diseño Mecánico y Análisis Cinemático del Robot Humanoide AXIS,” Pistas Educativas, no. 35(108), 2018.
  16. R. L. Williams. “DARwin-OP humanoid robot kinematics,” In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, vol. 45035, pp. 1187–1196, 2012, doi: 10.1115/DETC2012-70265.
  17. N. Kofinas, E. Orfanoudakis and M. G. Lagoudakis. “Complete analytical inverse kinematics for NAO,” In 2013 13th International Conference on Autonomous Robot Systems, pp. 1–6, 2013, doi: 10.1109/Robotica.2013.6623524.
  18. G. A. Castillo, B. Weng, W. Zhang and A. Hereid. “Robust feedback motion policy design using reinforcement learning on a 3D digit bipedal robot,” International Conference on Intelligent Robots and Systems (IROS), pp. 5136–5143, 2021, doi: 10.1109/IROS51168.2021.9636467.
  19. M. A. Meggiolaro, M. S. Neto and A. L. Figueroa. “Modeling and Optimization with Genetic Algorithms of Quasi-Static Gait Patterns in Planar Biped Robots,” In Congreso Internacional de Ingeniería Mecatrónica y Automatización (CIIMA 2016), pp. 1–10, 2016.
  20. G. Reyes, J. A. Pamanes, J. E. Fierro and V. Nunez. “Optimum Walking of the Bioloid Humanoid Robot on a Rectilinear Path,” In Computational Kinematics. Springer, Cham, pp. 143-151, 2018, doi: 10.1007/978-3-319-60867-9_17.
  21. A. B. Krishnan, S. Aswath and G. Udupa. “Real Time Vision Based Soccer Playing Humanoid Robotic Platform,” In Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, pp. 1–8, 2014, doi: 10.1145/2660859.2660966.
  22. J. R. Cerritos-Jasso, K. A. Camarillo-Gómez, J. A. Monsiváis-Medina, G. Castillo-Alfaro, G. I. Pérez-Soto and J. A. Pámanes-García. “Kinematic Modeling of a Humanoid Soccer–Player: Applied to BIOLOID Premium Type A Robot,” In FIRA RoboWorld Congress, Vols. Springer, Berlin, Heidelberg, pp. 49–63, 2013, doi: 10.1007/978-3642-40409-2_5.
  23. H. D. Chiang and C. S. Tsai. “Kinematics Analysis of a Biped Robot,” In Proceeding of International Conference on Service and Interactive Robots, 2011.
  24. C. A. M. Domínguez and E. M. Sánchez. “Análisis estático y dinámico de un robot bípedo durante la fase de soporte simple de un ciclo de marcha,” In Memorias del XXIII Congreso Internacional Anual de la SOMIM, 2017.
  25. L. E. Arias, L. I. Olvera, P. J. A. and J. V. Núñez. “Patrón de marcha 3D de tipo cicloidal para humanoides y su aplicación al robot Bioloid,” Revista Iberoamericana de Ingeniería Mecánica, Vols. 18(1), 3, 2014.
  26. D. A. B. Montenegro, Generación de Trayectorias para un Robot Bípedo basadas en Captura de Movimiento Humano, 2016.
  27. J. V. Nunez, A. Briseno, D. A. Rodriguez, J. M. Ibarra and V. M. Rodriguez. “Explicit analytic solution for inverse kinematics of bioloid humanoid robot,” In 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, pp. 33–38, 2012, doi: 10.1109/SBRLARS. 2012.62.
  28. M. V. Granja Oramas. “Modelación y análisis de la cinemática directa e inversa del manipulador Stanford de seis grados de libertad”, Bachelor’s thesis, Quito, 2014.
  29. E. H Franco, R. V. Guerrero, “Diseño Mecánico y Análisis Cinemático del Robot Humanoide AXIS”, Pistas Educativas, 35(108), 2018.
DOI: https://doi.org/10.14313/jamris/1-2023/3 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 22 - 29
Submitted on: Sep 1, 2022
Accepted on: Jul 17, 2023
Published on: Dec 26, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Miguel Angel Ortega-Palacios, Amparo Dora Palomino-Merino, Fernando Reyes-Cortes, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.