References
- R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars. “Memory aware synapses: Learning what (not) to forget”, Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 139–154.
- M. Biesialska, K. Biesialska, and M. R. Costa-jussà. “Continual lifelong learning in natural language processing: A survey”, Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 6523–6541.
- A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. “Riemannian walk for incremental learning: Understanding forgetting and intransigence”, Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 532–547.
- T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. “A simple framework for contrastive learning of visual representations”, International Conference on Machine Learning, 2020, pp. 1597–1607.
- Z. Chen, and B. Liu. “Lifelong machine learning”, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 12, no. 3, 2018, pp. 1–207.
- M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars. “A continual learning survey: Defying forgetting in classification tasks”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
- J. Devlin, M.- W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding”, arXiv preprint arXiv:1810.04805, 2018.
- H. H. Do, P. Prasad, A. Maag, and A. Alsadoon. “Deep learning for aspect-based sentiment analysis: a comparative review”, Expert Systems with Applications, vol. 118, 2019, pp. 272–299.
- R. M. French. “Catastrophic forgetting in connectionist networks”, Trends in Cognitive Sciences, vol. 3, no. 4, 1999, pp. 128–135.
- M. Hoang and A. Bihorac. “Aspect-based sentiment analysis using the pre-trained language model BERT”, 2019.
- M. Huang, Y. Wang, X. Zhu, and L. Zhao. “Attention-based LSTM for aspect-level sentiment classification”, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, USA, 2016, pp. 606–615.
- Z. Ke, B. Liu, H. Wang, and L. Shu. “Continual learning with knowledge transfer for sentiment classification”, Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, vol. 3, 2020, pp. 683–698.
- Z. Ke, B. Liu, H. Xu, and L. Shu. “CLASSIC: Continual and contrastive learning of aspect sentiment classification tasks”, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 6871–6883.
- S.- W. Lee, J.- H. Kim, J. Jun, J.- W. Ha, and B.- T. Zhang. “Overcoming catastrophic forgetting by incremental moment matching”, Advances in neural information processing systems, vol. 30, 2017.
- B. Liu, Sentiment analysis: Mining opinions, sentiments, and emotions, Cambridge University Press, 2020.
- V. Lomonaco. Continual learning with deep architectures. PhD thesis, Universidad de Bologna, Italia, 2019.
- D. López and L. Arco. “Multi-domain aspect extraction based on deep and lifelong learning”, Iberoamerican Congress on Pattern Recognition, 2019, pp. 556–565.
- D. Lopez-Paz. “Gradient episodic memory for continual learning”, Advances in Neural Information Processing Systems, 2017, pp. 6467–6476.
- D. López Ramos and L. Arco García. “Aprendizaje profundo para la extracción de aspectos en opiniones textuales”, Revista Cubana de Ciencias Informáticas, vol. 13, no. 2, 2019, pp. 105–145.
- A. Mallya, and S. Lazebnik. “Packnet: Adding multiple tasks to a single network by iterative pruning”, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.
- D. Maltoni, and V. Lomonaco. “Continuous learning in single-incremental-task scenarios”, Neural Networks, vol. 116, 2019, pp. 56–73.
- M. McCloskey and N. J. Cohen. “Catastrophic interference in connectionist networks: The sequential learning problem”, Psychology of learning and motivation, vol. 24, 1989, pp. 109–165.
- A. Nazir, Y. Rao, L. Wu, and L. Sun. “Issues and challenges of aspect-based sentiment analysis: a comprehensive survey”, IEEE Transactions on Affective Computing, vol. 13, no. 2, 2020.
- G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. “Continual lifelong learning with neural networks: a review”, Neural Networks, vol. 113, 2019, pp. 54–71.
- G. I. Parisi and V. Lomonaco. “Online continual learning on sequences”. Recent Trends in Learning From Data, pp. 197–221. New York Springer, 2020.
- M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar. “Semeval-2014 task 4: aspect based sentiment analysis”, Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014, pp. 27–35.
- Y. Ren, Y. Zhang, M. Zhang, and D. Ji. “Improving twitter sentiment classification using topicenriched multi-prototype word embeddings”, Thirtieth AAAI Conference on Artificial Intelligence, 2016.
- A. Rietzler, S. Stabinger, P. Opitz, and S. Engl. “Adapt or get left behind: domain adaptation through bert language model finetuning for aspect-target sentiment classification”, arXiv preprint arXiv:1908.11860, 2019.
- J. Serra, D. Suris, M. Miron, and A. Karatzoglou. “Overcoming catastrophic forgetting with hard attention to the task”, International Conference on Machine Learning, 2018, pp. 4548–4557.
- R. Singh, and S. Singh. “Text similarity measures in news articles by vector space model using nlp”, The Institution of Engineers (India): Series B, vol. 102, no. 2, 2021, pp. 329–338.
- Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao. “Attentional encoder network for targeted sentiment classification”, arXiv preprint arXiv:1902.09314, 2019.
- F. Tang, L. Fu, B. Yao, and W. Xu. “Aspect based fine-grained sentiment analysis for online reviews”, Information Sciences, vol. 488, 2019, pp. 190–204.
- E. Terra, A. Mohammed, and H. Hefny. “An approach for textual based clustering using word embedding”. Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges, pp. 261–280. Springer, 2021.
- G. M. Van de Ven, and A. S. Tolias. “Three scenarios for continual learning”, NeurIPS Continual Learning Workshop, vol. 1, no. 9, 2018.
- S. Wang, G. Lv, S. Mazumder, G. Fei, and B. Liu. “Lifelong learning memory networks for aspect sentiment classification”, 2018 IEEE International Conference on Big Data (Big Data), 2018, pp. 861–870.
- F. Wu, X.- Y. Jing, Z. Wu, Y. Ji, X. Dong, X. Luo, Q. Huang, and R. Wang, “Modality-specific and shared generative adversarial network for crossmodal retrieval”, Pattern Recognition, vol. 104, 2020, 107335.
- B. Zeng, H. Yang, R. Xu, W. Zhou, and X. Han. “LCF: a local context focus mechanism for aspectbased sentiment classification”, Applied Sciences, vol. 9, no. 16, 2019, 3389.
- F. Zenke, B. Poole, and S. Ganguli. “Continual learning through synaptic intelligence”, International Conference on Machine Learning, 2017, pp. 3987–3995.
- J. Zhou, J. X. Huang, Q. Chen, Q. V. Hu, T. Wang, and L. He. “Deep Learning for aspect-level sentiment classification: survey, vision and challenges”, IEEE Access, vol. 7, 2019, pp. 78454–78483.
- K. M. Zorn, D. H. Foil, T. R. Lane, D. P. Russo, W. Hillwalker, D. J. Feifarek, F. Jones, W. D. Klaren, A. M. Brinkman, and S. Ekins. “Machine learning models for estrogen receptor bioactivity and endocrine disruption prediction”, Environmental Science & Technology, vol. 54, no. 19, 2020, pp. 12202–12213.
