Have a personal or library account? Click to login
A Model of Continual and Deep Learning for Aspect Based in Sentiment Analysis Cover

A Model of Continual and Deep Learning for Aspect Based in Sentiment Analysis

Open Access
|Dec 2023

Abstract

Sentiment analysis is a useful tool in several social and business contexts. Aspect sentiment classification is a subtask in sentiment analysis that gives information about features or aspects of people, entities, products, or services present in reviews. Different deep learning models that have been proposed to solve aspect sentiment classification focus on a specific domain such as restaurant, hotel, or laptop reviews. However, there are few proposals for creating a single model with high performance in multiple domains. The continual learning approach with neural networks has been used to solve aspect classification in multiple domains. However, avoiding low, aspect classification performance in continual learning is challenging. As a consequence, potential neural network weight shifts in the learning process in different domains or datasets.

In this paper, a novel aspect sentiment classification approach is proposed. Our approach combines a transformer deep learning technique with a continual learning algorithm in different domains. The input layer used is the pretrained model Bidirectional Encoder Representations from Transformers. The experiments show the efficacy of our proposal with 78 % F1-macro. Our results improve other approaches from the state-of-the-art.

DOI: https://doi.org/10.14313/jamris/1-2023/1 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 3 - 12
Submitted on: Jan 10, 2023
Accepted on: Feb 18, 2023
Published on: Dec 26, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dionis López, Fernando Artigas-Fuentes, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.