Have a personal or library account? Click to login
Fuzzy Automatic Control of the Pyrolysis Process for the Municipal Solid Waste of Variable Composition Cover

Fuzzy Automatic Control of the Pyrolysis Process for the Municipal Solid Waste of Variable Composition

Open Access
|Apr 2023

References

  1. [1] A. Tozlu, E. Ozahi, A. Abusoglu, “Waste to energy technologies for municipal solid waste management in Gaziantep”, Renewable and Sustainable Energy Reviews, Vol. 54, 2016, 809-815. DOI:10.1016/j.rser.2015.10.097
  2. [2] R. Kothari, V. Tyagi, F. Pathak, “Waste to energy: A way from renewable energy sources to sustainable development”, Renewable and Sustainable Energy Reviews, Vol. 14, No 9, 2010, 3164–3170. DOI:10.1016/j.rser.2010.05.005
  3. [3] C. Guizani, et al., “Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity”, Energies, 10(6), 2017, 796. DOI:10.3390/en10060796
  4. [4] “Nur 16 Prozent des Plastikmülls werden wiederverwendet”, Newspaper website Spiegel, 2019. https://www.spiegel.de/wissenschaft/natur/plastikmuell-nur-16-prozent-werden-in-deutschland-wiederverwendet-a-1271125.html
  5. [5] Y. Li, R. Gupta, S. You, “Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass”, Bioresource Technology, Vol. 359, 2022, 127511. DOI:10.1016/j.biortech.2022.127511
  6. [6] S. Wu, et al., “Simulation and optimization of heating rate and thermal uniformity of microwave reactor for biomass pyrolysis”, Chemical Engineering Science, Vol. 250, 2022, 117386. DOI:10.1016/j.ces.2021.117386
  7. [7] S.N. Pelykh, M.V. Maksimov, M.V. Nikolsky, “A method for minimization of cladding failure parameter accumulation probability in VVER fuel elements”, Problems of Atomic Science and Technology, 92(4), 2014, 108-116. https://www.researchgate.net/publication/289947827_A_method_for_minimization_of_cladding_failure_parameter_accumulation_probability_in_VVER_fuel_elements
  8. [8] S.N. Pelykh, M.V. Maksimov, “The method of fuel rearrangement control considering fuel element cladding damage and burnup”, Problems of Atomic Science and Technology, 87(5), 2013, 84-90. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_5/article_2013_5_84a.pdf
  9. [9] M.V. Maksimov, S.N. Pelykh, R.L. Gontar, “Principles of controlling fuel-element cladding lifetime in variable VVER-1000 loading regimes”, Atomic Energy, 112(4), 2012, 241-249. DOI:10.1007/s10512-012-9552-3
  10. [10] I. Atamanyuk, J. Kacprzyk, Y. Kondratenko, M. Solesvik, “Control of Stochastic Systems Based on the Predictive Models of Random Sequences”, In: Y.P. Kondratenko, A.A. Chikrii, V.F. Gubarev, J. Kacprzyk (Eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Dedicated to Professor Vsevolod M. Kuntsevich. Studies in Systems, Decision and Control, Vol. 203. Cham: Springer Nature Switzerland AG, 2019, 105-128. DOI: 10.1007/978-3-030-21927-7_6
  11. [11] O. Kozlov, G. Kondratenko, Z. Gomolka, Y. Kondratenko, “Synthesis and Optimization of Green Fuzzy Controllers for the Reactors of the Specialized Pyrolysis Plants”, Kharchenko V., Kondratenko Y., Kacprzyk J. (Eds) Green IT Engineering: Social, Business and Industrial Applications, Studies in Systems, Decision and Control, Vol 171, 2019, Springer, Cham, 373-396. DOI:10.1007/978-3-030-00253-4_16
  12. [12] Y.P. Kondratenko, O.V. Kozlov, O.V. Korobko, “Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems”, J. Medina et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Foundations, 17th International Conference, IPMU 2018, Cadiz, Spain, Proceedings, Part II, CCIS 854, Springer International Publishing AG, 570-582, 2018. DOI:10.1007/978-3-319-91476-3_47
  13. [13] Y.P. Kondratenko, A.V. Kozlov, “Generation of Rule Bases of Fuzzy Systems Based on Modified Ant Colony Algorithms”, Journal of Automation and Information Sciences, Vol. 51, Issue 3, 2019, New York: Begel House Inc., 4-25. DOI: 10.1615/JAutomatInfScien.v51.i3.20
  14. [14] “Advance trends in soft computing”, M. Jamshidi, V. Kreinovich, J. Kacprzyk, Eds. Cham: Springer-Verlag, 2013. DOI:10.1007/978-3-319-03674-8
  15. [15] Y.P. Kondratenko, O.V. Korobko, O.V. Kozlov, “Synthesis and Optimization of Fuzzy Controller for Thermoacoustic Plant”, Lotfi A. Zadeh et al. (Eds.) Recent Developments and New Direction in Soft-Computing Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 342, 2016, Berlin, Heidelberg: Springer-Verlag, 453–467. DOI:10.1007/978-3-319-32229-2_31
  16. [16] J. Zhao, et al., “The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm”, 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016, 556-559. DOI: 10.1109/WCI-CA.2016.7578443
  17. [17] J. Kacprzyk, “Multistage Fuzzy Control: A Prescriptive Approach”, John Wiley & Sons, Inc., New York, NY, USA, 1997.
  18. [18] W. Pedrycz, K. Li, M. Reformat, “Evolutionary reduction of fuzzy rule-based models”, Fifty Years of Fuzzy Logic and its Applications, STUDFUZ 326, Cham: Springer, 2015, 459-481. DOI:10.1007/978-3-319-19683-1_23
  19. [19] N. Ben, S. Bouallègue, J. Haggège, “Fuzzy gains-scheduling of an integral sliding mode controller for a quadrotor unmanned aerial vehicle”, Int. J. Adv. Comput. Sci. Appl., Vol. 9, no. 3, 2018, 132–141. DOI: 10.14569/IJACSA.2018.090320
  20. [20] J. Kacprzyk, Y. Kondratenko, J. M. Merigo, J. H. Hormazabal, G. Sirbiladze, A. M. Gil-Lafuente, “A Status Quo Biased Multistage Decision Model for Regional Agricultural Socioeconomic Planning Under Fuzzy Information”, In: Y.P. Kondratenko, A.A. Chikrii, V.F. Gubarev, J. Kacprzyk (Eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Dedicated to Professor Vsevolod M. Kuntsevich. Studies in Systems, Decision and Control, Vol. 203. Cham: Springer Nature Switzerland AG, 2019, 201-226. DOI: 10.1007/978-3-030-21927-7_10
  21. [21] D. Ghosh, S. K. Bandyopadhyay, G. S. Taki, “Green Energy Harvesting from Waste Plastic Materials by Solar Driven Microwave Pyrolysis,” 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 2020, 1-4. DOI: 10.1109/IEMEN-Tech51367.2020.9270122
  22. [22] A.J. Bowles, G.D. Fowler, “Assessing the impacts of feedstock and process control on pyrolysis outputs for tyre recycling”, Resources, Conservation and Recycling, Vol. 182, 2022, 106277. DOI:10.1016/j.resconrec.2022.106277
  23. [23] B. Zhang, D. -L. Xu, X. -D. Hu, Y. Liu, “Automatic control system of biomass pyrolysis gas carbon compound furnace based on PLC”, 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 2020, 435-442. DOI: 10.1109/WCMEIM52463.2020.00098
  24. [24] Y . P. Kondratenko, O. V. Kozlov, O. S. Gerasin, A. M. Topalov, O. V. Korobko, “Automation of control processes in specialized pyrolysis complexes based on Web SCADA Systems”, Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS): Proceedings of the 9th IEEE International Conference. Bucharest, Romania, volume 1, 2017, 107-112. DOI: 10.1109/IDAACS.2017.8095059
  25. [25] Z. Fu, J. Wang and C. Yang, “Research on heat transfer function modeling of plastic waste pyrolysis gasification reaction kettle,” 2017 Chinese Automation Congress (CAC), 2017, pp. 2698–2701, DOI: 10.1109/CAC.2017.8243233
  26. [26] Y.P. Kondratenko, O.V. Kozlov, “Mathematic Modeling of Reactor’s Temperature Mode of Multiloop Pyrolysis Plant”, Modeling and Simulation in Engineering, Economics and Management, Lecture Notes in Business Information Processing, Vol. 115, 2012, 178-187. DOI:10.1007/978-3-642-30433-0_18
  27. [27] J. Hofmann, H. Holz, L. Gröll, “Relative Gain Array and Singular Value Analysis to Improve the Control in a Biomass Pyrolysis Process”, 2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, 596-603, DOI: 10.1109/ICCA.2019.8900025
  28. [28] D. V. Tuntsev, et al., “The mathematical model of fast pyrolysis of wood waste”, 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), 2015, 1-4, DOI: 10.1109/MEACS.2015.7414929
  29. [29] Y.P. Kondratenko, O.V. Kozlov, L.P. Klymenko, G.V. Kondratenko, “Synthesis and Research of Neuro-Fuzzy Model of Ecopyrogenesis Multi-circuit Circulatory System”, Advance Trends in Soft Computing, Studies in Fuzziness and Soft Computing, Berlin, Heidelberg: Springer-Verlag, Vol. 312, 2014, 1-14. DOI:10.1007/978-3-319-03674-8_1
  30. [30] Y.P. Kondratenko, O.V. Kozlov, “Mathematical Model of Ecopyrogenesis Reactor with Fuzzy Parametrical Identification”, Recent Developments and New Direction in Soft-Computing Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 342, Lotfi A. Zadeh et al. (Eds.). Berlin, Heidelberg: Springer-Verlag, 2016, 439-451. DOI:10.1007/978-3-319-32229-2_30
  31. [31] F. S. Tudor, F. M. Boangiu, C. Petrescu, “First order controller for a petrochemical pyrolysis reactor”, 2nd International Conference on Systems and Computer Science, 2013, 20-25, DOI: 10.1109/IcConSCS.2013.6632017
  32. [32] Q. Bu et al. “The effect of fuzzy PID temperature control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis”, Journal of Analytical and Applied Pyrolysis, Vol. 158, 2021, 105176. https://doi.org/10.1016/j.jaap.2021.105176
  33. [33] X. Liu, S. Wang, L. Xing, “Fuzzy self-tuning PID temperature control for biomass pyrolysis fluidized bed combustor”, 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, 384-387. DOI: 10.1109/ICIME.2010.5477837
  34. [34] M. Mircioiu, E. -M. Cimpoeşu, C. Dimon, “Robust control and optimization for a petrochemical pyrolysis reactor”, 18th Mediterranean Conference on Control and Automation, MED’10, 2010, 1097-1102, DOI: 10.1109/MED.2010.5547645
  35. [35] P. Cristina, P. Alexandru, “Improving FCC plant performance with model reference adaptive control based on neural network”, 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2016, 1-4. DOI: 10.1109/ECAI.2016.7861074
  36. [36] D. Popescu, C. Petrescu, C. Dimon, M. Boangiu, “Control and optimization for a petrochemical reactor”, 2nd International Conference on Systems and Computer Science, 2013, 14-19. DOI: 10.1109/IcConSCS.2013.6632016
  37. [37] M.V. Maksymov, et al., “Automatic Control for the Slow Pyrolysis of Organic Materials with Variable Composition”, in Advanced Control Systems: Theory and Applications. Series in Automation, Control and Robotics River Publishers, Y.P. Kondratenko et al. (Eds.), Chapter 14, 2021, 397–430. ISBN:978-87-7022-341-6
  38. [38] O. Brunetkin, et al., “Development of the unified model for identification of composition of products from incineration, gasification, and slow pyrolysis”, Eastern European Journal of Enterprise Technologies, 4/6 (100), 2019, 25–31. DOI: 10.15587/1729-4061.2019.176422
  39. [39] V.P. Sabanin, et al., “Load control and the provision of the efficiency of steam boilers equipped with an extremal governor”, Therm. Eng. 61, 2014, 905-910. DOI:10.1134/S004060151411007X
  40. [40] Y.M. Kovrigo, T.G. Bagan, A.S. Bunke, “Securing robust control in systems for closed-loop control of inertial thermal power facilities”, Therm. Eng. 61, 2014, 183–188. DOI:10.1134/S0040601514030057
  41. [41] S.A. Morales, D.R. Barragan, V. Kafarov, “3D CFD Simulation of Combustion in Furnaces Using Mixture Gases with Variable Composition”, Chemical Engineering Transactions, Vol. 70, 2018, 121–126. DOI: 10.3303/CET1870021
DOI: https://doi.org/10.14313/jamris/1-2022/9 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 83 - 94
Submitted on: Dec 15, 2022
Accepted on: Dec 20, 2022
Published on: Apr 4, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Oleksiy Kozlov, Yuriy Kondratenko, Hanna Lysiuk, Viktoriia Kryvda, Oksana Maksymova, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.