Have a personal or library account? Click to login
Autonomous Anomaly Detection System for Crime Monitoring and Alert Generation Cover

Autonomous Anomaly Detection System for Crime Monitoring and Alert Generation

Open Access
|Apr 2023

References

  1. [1] B.M. Peixoto, B. Lavi, Z. Dias, A. Rocha, “Harnessing high-level concepts, visual, and auditory features for violence detection in videos”, Journal of Visual Communication and Image Representation, 10.1016/j.jvcir.2021.103174
  2. [2] Y. Gao, H. Liu, X. Sun, C. Wang, Y. Liu, “Violence detection using Violent Flows”, 10.1016/j.ima-vis.2016.01.006
  3. [3] T. Hassner, Y. Itcher & Y. Itcher, Violent Flows: Real-Time Detection of Violent Crowd Behavior, IEEE, 2012, www.openu.ac.il/home/hassner/data/violentflows/978-1-4673-1612-5/12/$31.00
  4. [4] C. Ding, S. Fan, M. Zhu, W. Feng, and B. Jia, “Violence detection in video by using 3D convolutional neural networks”, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8888, 2014, pp. 551– 558. 10.3390/app11083523
  5. [5] G. Mu, H. Cao, and Q. Jin, “Violent Scene Detection Using Convolutional Neural Networks and Deep Audio Features,” 2008, pp. 645–651. 10.1109/ICCSP48568.2020.9182433
  6. [6] G. Sakthivinayagam, R. Easawarakumar, A. Arunachalam, and M.Pandi, “Violence Detection System using Convolution Neural Network”, SSRG Int. J. Electron. Commun. Eng., vol. 6, 2019, pp. 6–9.
  7. [7] B. Peixoto, B. Lavi, and P. Martin, “Toward subjective violence detection in videos”, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., 2019, pp. 8276–8280.
  8. [8] A. Hanson, K. Pnvr, S. Krishnagopal, and L. Davis, “Bidirectional convolutional LSTM for the detection of violence in videos”, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.Notes Bioinformatics), vol. 11130 LNCS, 2019, pp. 280–295.
  9. [9] S. Soner, R. Litoriya, and P. Pandey, “Exploring Blockchain and Smart Contract Technology for Reliable and Secure Land Registration and Record Management,” Wireless Personal Communications, Aug. 2021.
  10. [10] C. Dhiman and D. K. Vishwakarma, “A review of state-of-the-art techniques for abnormal human activity recognition,” Eng. Appl. Artif. Intell., vol. 77, no. 2018 Aug, 2019, pp. 21–45.
  11. [11] S. Soner, A. Jain, A. Tripathi, R. Litoriya, “A novel approach to calculate the severity and priority of bugs in software projects”, 2nd International conference on education technology and computer, vol. 2, 2010, pp. V2-50-V2-54. 10.1109/ICETC.2010.5529438.
  12. [12] O. Kliper-Gross, T. Hassner, and L. Wolf, “The action similarity labeling challenge”, TPAMI, vol. 99, 2012.
  13. [13] Q. Dai et al., “Fudan-Huawei at MediaEval 2015: Detecting violent scenes and affective impact in movies with deep learning”, CEUR Workshop Proc., vol. 1436, 2015, pp. 5–7.
  14. [14] Y. Pritch, S. Ratovitch, A. Hendel, and S. Peleg. “Clustered synopsis of surveillance video”, In Advanced Video and Signal Based Surveillance, 2009, pp. 195–200.
  15. [15] R. Retoliya, S. Soner, “RSA Based Threshold Cryptography for Secure Routing and Key Exchange in Group Communication”, International Conference on Advances in Communication, Network, and Computing, vol. 142, pp. 624-627.
  16. [16] E.Y. Fu, H.V. Leong, G. Ngai, S.C.F. Chan, “Automatic fight detection in surveillance videos”, Int. J. Pervasive Comput. Commun., vol. 13, no. 2, 2017, pp. 130–156.
  17. [17] T. Senst, V. Eiselein, A. Kuhn, T. Sikora, “Crowd violence detection using global motion-compensated Lagrangian features and scale-sensitive video-level representation”, IEEE Trans. Inf. Forensics Secur., vol. 12, no. 12, 2017, pp. 2945–2956.
  18. [18] A. Hanson, K. PNVR, S. Krishnagopal, L. Davis, “Bidirectional convolutional LSTM for the detection of violence in videos”, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
  19. [19] X. Zhai, A. Oliver, A. Kolesnikov, L. Beyer, “S4L: Self-supervised semi-supervised learning”, in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  20. [20] C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, S. Tubaro, “Automatic reliability estimation for speech audio surveillance recordings”, in: The IEEE International Workshop on Information Forensics and Security, WIFS, 2019.
  21. [21] K. Gkountakos, K. Ioannidis, T. Tsikrika, S. Vrochidis, I. Kompatsiaris, “Crowd Violence Detection from Video Footage”, 2021 International Conference on Content-Based Multimedia Indexing (CBMI), INSPEC Accession Number: 20729035, 10.1109/CBMI50038.2021.9461921
  22. [22] K. Gkountakos, K. Ioannidis, T. Tsikrika, S. Vrochidis, and I. Kompatsiaris, “A crowd analysis framework for detecting violence scenes”, Proceedings of the 2020 International Conference on Multimedia Retrieval, 2020, pp. 276-280.
  23. [23] S. Soner, A. Jain, D. Saxena, “Metrics calculation for deployment process”, 2010 2nd International Conference on Software Technology and Engineering, 2010. 10.1109/ICSTE.2010.5608760
  24. [24] M. Sharma, R. Baghel, “Video Surveillance for Violence Detection Using Deep Learning”, In: Advances in Data Science and Management, Springer: Berlin/Heidelberg, Germany, 2020, pp. 411–420.
  25. [25] E. Ditsanthia, L. Pipanmaekaporn, and S. Kamonsantiroj, “Video Representation Learning for CCTV-Based Violence Detection”, TIMES-iCON 2018 - 3rd Technol. Innov. Manag. Eng. Sci. Int. Conf., 2019, pp. 1–5.
  26. [26] F. U. M. Ullah, A. Ullah, K. Muhammad, I. U. Haq, and S. W. Baik, “Violence detection using spatiotemporal features with 3D convolutional neural network”, Sensors (Switzerland), vol. 19, no. 11, 2019, pp. 1–15.
DOI: https://doi.org/10.14313/jamris/1-2022/7 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 62 - 71
Submitted on: Dec 8, 2021
Accepted on: Sep 6, 2022
Published on: Apr 4, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jyoti Kukad, Swapnil Soner, Sagar Pandya, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.