Have a personal or library account? Click to login
Enhancing Efficiency And Security In Healthcare IoT: A Novel Approach For Fog Computing Resource Optimization Using TGA-RNN Cover

Enhancing Efficiency And Security In Healthcare IoT: A Novel Approach For Fog Computing Resource Optimization Using TGA-RNN

Open Access
|Dec 2025

References

  1. C. Guerrero, I. Lera, and C. Juiz, “Genetic-based optimization in fog computing: Current trends and research opportunities”, Swarm and Evolutionary Computation, vol. 72, 2022, 101094. http s://doi.org/10.1016/j.swevo.2022.101094.
  2. V. K. Quy, N. V. Hau, D. V. Anh, and L. A. Ngoc, “Smart healthcare loT applications based on fog computing: architecture, applications and challenges”, Complex & Intelligent Systems, vol. 8, no. 5, 2022, 3805-3815. https://doi.org/10.1007/s40747-021-00582-9.
  3. S. Goyal, N. Sharma, B. Bhushan, A. Shankar, and M. Sagayam, “loT enabled technology in secured healthcare: applications, challenges and future directions”, Cognitive Internet of Medical Things for Smart Healthcare: Services and Applications, 2021, 25-48. https://doi.org/10.1007/978-3-030-55833-8_2.
  4. M. Ijaz, G. Li, L. Lin, O. Cheikhrouhou, H. Hamam, and A. Noor, “Integration and applications of fog computing and cloud computing based on the internet of things for provision of healthcare services at home”, Electronics, vol. 10, no. 9, 2021, 1077. https://doi.org/10.3390/electronics100 91077.
  5. S. M. Karunarathne, N. Saxena, and M. K. Khan, “Security and privacy in loT smart healthcare”, IEEE Internet Computing, vol. 25, no. 4, 2021, 37-48. https://doi.org/10.1109/MIC.2021.3 051675.
  6. S. Tanwar, and James, “Fog computing for healthcare 4.0 environments”, Switzerland: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-46197-3.
  7. F. Farid, M. Elkhodr, F. Sabrina, F. Ahamed, and E. Gide, “A smart biometric identity management framework for personalised IoT and cloud computing-based healthcare services”, Sensors, vol. 21, no. 2, 2021, 552. https://doi.org/10.3 390/s21020552.
  8. N. Singh, M. Raza, V. V. Paranthaman, M. Awais, M. Khalid, and E. Javed, “Internet of Things and cloud computing”, In Digital Health, 151-162. Academic Press, 2021.
  9. A. R. Nasser, A. M. Hasan, A. J. Humaidi, A. Alkhayyat, L. Alzubaidi, M. A. Fadhel, J. Santamaría, and Y. Duan, “Iot and cloud computing in health-care: A new wearable device and cloudbased deep learning algorithm for monitoring of diabetes”, Electronics, vol. 10, no. 21, 2021, 2719. https://doi.org/10.3390/electronics10212719.
  10. C. Huang, H. Wang, L. Zeng, and T. Li, “Resource scheduling and energy consumption optimization based on Lyapunov optimization in fog computing” Sensors, vol. 22, no. 9, 2022, 3527. https://doi.org/10.3390/s22093527.
  11. K. S. Awaisi, S. Hussain, M. Ahmed, A. A. Khan, and G. Ahmed, “Leveraging IoT and fog computing in healthcare systems”, IEEE Internet of Things Magazine, vol. 3, no. 2, 2020, 52-56. https://doi. org/10.1109/IOTM.0001.1900096.
  12. D. Kumar, A. K. Maurya, and G. Baranwal, “IoT services in healthcare industry with fog/edge and cloud computing”, In IoT-based data analytics for the healthcare industry, 81-103, Academic Press, 2021. https://doi.org/10.1016/B9 78-0-12-821472-5.00017-X.
  13. N. A. S. Al-Jamali, and H. S. Al-Raweshidy, “Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System”, in IEEE Access, vol. 9, pp. 47864-47874, 2021. https://doi.org/10.1109/ACCESS.2021. 3068610.
  14. E. S. L. Ho, “Data security challenges in deep neural network for healthcare IoT systems”, Security and Privacy Preserving for IoT and 5G Networks: Techniques, Challenges, and New Directions, 2022, 19-37. https://doi.org/10.1007/97 8-3-030-85428-7_2.
  15. D. Li, W. Li, Y. Zhao, and X. Liu, “The Analysis of Deep Learning Recurrent Neural Network in English Grading Under the Internet of Things”, in IEEE Access, vol. 12, 2024, 44640-44647. https://doi.org/10.1109/ACCESS.2024.
  16. S. S. Sefati, B. Arasteh, S. Halunga, O. Fratu, and A. Bouyer, “Meet User”s Service Requirements in Smart Cities Using Recurrent Neural Networks and Optimization Algorithm”, in IEEE Internet of Things Journal, vol. 10, no. 24, 2023, 22256-22269. https://doi.org/10.1109/JIOT.2023.33 03188.
  17. M. Abd Elaziz, L. Abualigah, and I. Attiya, “Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments”, Future Generation Computer Systems, vol. 124, 2021, 142-154. https://doi.org/10.1016/j.future.2021.05.026.
  18. A. K. Sarangi, A. G. Mohapatra, T. C. Mishra, and B. Keswani, “Healthcare 4.0: A voyage of fog computing with iot, cloud computing, big data, and machine learning”, Fog Computing for Healthcare 4.0 Environments: Technical, Societal, and Future Implications, 2021, 177-210. https://doi.org/10.1007/978-3-030-46197-3_8.
  19. S. M. Hashemi, A. Sahafi, A. M. Rahmani, and M. Bohlouli, “GWO-SA: Gray Wolf Optimization Algorithm for Service Activation Management in Fog Computing”, in IEEE Access, vol. 10, 2022, 107846-107863. https://doi.org/10.1109/AC CESS.2022.3212439.
  20. Y. Ramzanpoor, M. H. Shirvani, and M. Golsorkhtabaramiri, “Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure”, Complex & Intelligent Systems, vol. 8, no. 1, 2022, 361-392. https://doi.org/10.1007/s40747-021-00368-z.
  21. D. Javaheri, S. Gorgin, J. A. Lee, and M. Masdari, “An improved discrete harris hawk optimization algorithm for efficient workflow scheduling in multi-fog computing”, Sustainable Computing: Informatics and Systems, vol. 36, 2022, 100787. https://doi.org/10.1016/j.suscom.2022.1007 87.
  22. H. Gezici, and H. Livatyali, “An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems”, Engineering Applications of Artificial Intelligence, vol. 113, 2022, 104952. https://doi.org/10.1016/j.enga ppai.2022.104952.
  23. R. Sing, S. K. Bhoi, N. Panigrahi, K. S. Sahoo, N. Jhanjhi, and M. A. AlZain, “A whale optimization algorithm based resource allocation scheme for cloud-fog based loT applications”, Electronics, vol. 11, no. 19, 2022, 3207. https://doi.org/10.3 390/electronics11193207.
  24. C. Huang, H. Wang, L. Zeng, and T. Li, “Resource scheduling and energy consumption optimization based on Lyapunov optimization in fog computing”, Sensors, vol. 22, no. 9, 2022, 3527. https://doi.org/10.3390/s22093527.
  25. C. Ren, X. Lyu, W. Ni, H. Tian, W Song, and R. P. Liu, “Distributed online optimization of fog computing for internet of things under finite device buffers”, IEEE Internet of Things Journal, vol. 7, no. 6, 2020, 5434-5448. https://doi.org/10.1 109/JIOT.2020.2979353.
  26. T. Huang, W. Lin, C. Xiong, R. Pan, and J. Huang, “An ant colony optimization-based multiobjective service replicas placement strategy for fog computing”, IEEE Transactions on Cybernetics, vol. 51, no. 11, 2020, 5595-5608. https://doi. org/10.1109/TCYB.2020.2989309.
  27. M. K. Ahirwar, P. K. Shukla, and R. Singhai, “CBO-IE: a data mining approach for healthcare IoT dataset using chaotic biogeography-based optimization and information entropy”, Scientific Programming, vol. 2021, 2021, 1-14. https://do i.org/10.1155/2021/8715668.
  28. R. F. Mansour, A. El Amraoui, I. Nouaouri, V. G. Díaz, D. Gupta, and S. Kumar, “Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systerns”, IEEE Access, vol. 9, 2021, 45137-45146. ht tps://doi.org/10.1109/ACCESS.2021.3066365.
  29. S. Sutradhar, S. Karforma, R. Bose, and S. Roy, “A dynamic step-wise tiny encryption algorithm with fruit fly optimization for quality of service improvement in healthcare”, Healthcare Analytics, vol. 3, 2023, 100177.
  30. R. R. Irshad, A. Abdu Alattab, I. M. Alwayle, K. M. Alalayah, K. MG Noaman, M. A. Mahdi, and A. M. Aqlan, “A Novel Structure Optoelectronic Biosensor for Detection of Infectious Diseases Using SALP Swarm Optimized Artificial Neural Network Technique”, Journal of Nanoelectronics and Optoelectronics, vol. 17, no. 8, 2022, 1154-1162.
DOI: https://doi.org/10.14313/jamris-2025-037 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 82 - 93
Submitted on: May 21, 2024
|
Accepted on: Jul 23, 2024
|
Published on: Dec 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Rahul Jaywantrao Shimpi, Vibha Tiwari, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.