Have a personal or library account? Click to login

Design of Fault-tolerant Structures for Underwater Sensor Networks Based on Markov Chains

Open Access
|Mar 2025

References

  1. A. Narwaria, A. P. Mazumdar, “Software-Defined Wireless Sensor Network: A Comprehensive Survey”, Journal of Network and Computer Applications, vol. 215, 2023, 103636. https://doi.org/10.1016/j.jnca.2023.103636
  2. M. M. Rahaman, M. Azharuddin, “Wireless sensor networks in agriculture through machine learning: A survey”, Computers and Electronics in Agriculture, vol. 197, 2022, 106928. https://doi.org/10.1016/j.compag.2022.106928
  3. Y. Wu., et al., “Epidemic spreading in wireless sensor networks with node sleep scheduling”, Physica A: Statistical Mechanics and its Applications, vol. 629, 2023, 129204. https://doi.org/10.1016/j.physa.2023.129204
  4. E. Pievanelli, et al., “Dynamic wireless sensor networks for real time safeguard of workers exposed to physical agents in constructions sites,” 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Austin, TX, USA, 2013, pp. 55–57. doi: 10.1109/WiSN et.2013.6488632.
  5. R. Elhabyan, W. Shi, M. St-Hilaire, “Coverage protocols for wireless sensor networks: Review and future directions”, Journal of Communications and Networks, vol. 21, no. 1, 2019, pp. 45–60. doi: 10.1109/JCN.2019.000005.
  6. M. Kumar, et al., “Optimization of Wireless Sensor Networks Inspired by Small World Phenomenon”, 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 2015, pp. 66–70. doi: 10.1109/ICIINFS.2015.7398987.
  7. R. G. Baldovino, I. C. Valenzuela, E. P. Dadios, “Implementation of a Lowpower Wireless Sensor Network for Smart Farm Applications”, IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 2018, pp. 1–5, doi: 10.1109/HNICEM.2018.86 66262.
  8. H. K. Sethi, et al, “Incremental Model for Complete Area Coverage in Wireless Sensor Networks”, 2015 International Conference on Computational Intelligence and Networks, Odisha, India, 2015, pp. 92–97. doi: 10.1109/CINE.2015.27.
  9. R. T. Tse, Y. Xiao, “A Portable Wireless Sensor Network system for real-time environmental monitoring”, 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 2016, pp. 1–6. doi: 10.1109/WoWMoM.2016.75 23588.
  10. S. M. Kamruzzaman, et al., “Wireless Positioning Sensor Network Integrated with Cloud for Industrial Automation”, 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 2017, pp. 543–546. doi: 10.1109/LCN.2017.68.
  11. I. A. Sawaneh, I. Sankoh, D. K. Koroma, “A survey on security issues and wearable sensors in wireless body area network for healthcare system”, 2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2017, pp. 304–308. doi: 10.1109/ICCWAMTIP. 2017.8301502.
  12. J. Villadangos, et al., “Distributed Opportunistic Wireless Mapplicationing System towards Smart City Service Provision”, 2021 IEEE Sensors, Sydney, Australia, 2021, pp. 1–4. doi: 10.1109/SENSORS47087.2021.9639791.
  13. S. Li, et al., “Survey on high reliability wireless communication for underwater sensor networks”, Journal of Network and Computer Applications, vol. 148, 2019, 102446. https://doi.org/10.1016/j.jnca.2019.102446
  14. M. Ahmed, M. Salleh, M. I. Channa, “Routing protocols based on protocol operations for underwater wireless sensor network: A survey”, Egyptian Informatics Journal, vol. 19, no. 1, 2018, pp. 57–62. https://doi.org/10.1016/j.eij.2017.07.002
  15. K. K. Gola, et al., “An empirical study on underwater acoustic sensor networks based on localization and routing approaches”, Advances in Engineering Software, vol. 175, 2023, 103319. https://doi.org/10.1016/j.advengsoft.2022.103319
  16. G. Yang, et al., “Challenges and Security Issues in Underwater Wireless Sensor Networks”, Proce-dia Computer Science, vol. 147, 2019, pp. 210–216. https://doi.org/10.1016/j.procs.2019.01.225
  17. I. F. Akyildiz, D. Pompili, T. Melodia, “Underwater acoustic sensor networks: research challenges”, Ad Hoc Networks, vol. 3, no. 3, 2005, pp. 257–279. https://doi.org/10.1016/j.adhoc.2005.01.004
  18. M. Dong, et al., “Learning automaton-based energy-efficient and fault-tolerant topology evolution algorithm for underwater acoustic sensor network”, Journal of Network and Computer Applications, vol. 217, 2023, 103690. https://doi.org/10.1016/j.jnca.2023.103690
  19. A. P. Das, S. M. Thampi, “Fault-resilient localization for underwater sensor networks”, Ad Hoc Networks, vol. 55, 2017, pp. 132–142. https://doi.org/10.1016/j.adhoc.2016.09.003
  20. R. R. Priyadarshini, N. Sivakumar, “Failure prediction, detection & recovery algorithms using MCMC in tree-based network topology to improve coverage and connectivity in 3D-UW environment”, Applied Acoustics, vol. 158, 2020, 107053. https://doi.org/10.1016/j.apacoust.2019.107053
  21. T. R. Chenthil, P. J. Jayarin, “Energy Efficient Clustering Based Depth Coordination Routing Protocol For Underwater Wireless Sensor Networks”, 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 2022, pp. 370–375. doi: 10.1109/WiSPNET54241.2022.9767124
  22. X. Liu, F. Zhou, “Energy-Efficient Routing Protocol Based on Data Dissemination for Underwater Wireless Sensor Network” OCEANS 2023 - Limerick, Limerick, Ireland, 2023, pp. 1–5. doi: 10.110 9/OCEANSLimerick52467.2023.10244378
  23. G. Qiao, et al., “Distributed Localization Based on Signal Propagation Loss for Underwater Sensor Networks”, IEEE Access, vol. 7, 2019, pp. 112985–112995. doi: 10.1109/ACCESS.2019.2934978
  24. A. Sabra, W. -k. Fung, P. Radhakrishna, “Confidence-based Underwater Localization Scheme for Large-Scale Mobile Sensor Networks”, OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1–6. doi: 10.1109/OCEANS.2018.8604878
  25. F. Steinmetz, B. -C. Renner, “From the Long-Range Channel in the Ocean to the Short-Range and Very Shallow-Water Acoustic Channel in Ports and Harbors”, 2021 Fifth Underwater Communications and Networking Conference (UComms), Lerici, Italy, 2021, pp. 1–5. doi: 10.1 109/UComms50339.2021.9598094
  26. D. Schütze et al., “Miniaturized Sensor Modules for under Water Applications realized by Printed Circuit Board Embedding Technology”, 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC), Sibiu, Romania, 2022, pp. 49–54. doi: 10.1109/ESTC55720.2022.9939405
  27. G. Sang et al., “Three-Wavelength Fiber Laser Sensor With Miniaturization, Integration for the Simultaneous Measurement of Underwater pH, Salinity, Temperature, and Axial Strain”, IEEE Transactions on Instrumentation and Measurement, vol. 72, 2023, Art no. 7006815, pp. 1–15. doi: 10.1109/TIM.2023.3309356.
  28. B. Mishachandar, S. Vairamuthu, “An underwater cognitive acoustic network strategy for efficient spectrum utilization”, Applied Acoustics, vol. 175, 2021, 107861. https://doi.org/10.1016/j.apacoust.2020.107861
  29. H. Dol et al., “EDA-SALSA: Development of a self-reconfigurable protocol stack for robust underwater acoustic networking”, OCEANS 2023 - Limerick, Limerick, Ireland, 2023, pp. 1–10. doi: 10.1109/OCEANSLimerick52467.2023.10244330.
  30. H. Li, et al., “Security and privacy in localization for underwater sensor networks”, IEEE Communications Magazine, vol. 53, no. 11, 2015, pp. 56–62. doi: 10.1109/MCOM.2015.7321972.
  31. X. Feng, Z. Wang, N. Han, “Protection Research of Sink Location Privacy in Underwater Sensor Networks”, IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFO-COM WKSHPS), Paris, France, 2019, pp. 1–6. doi: 10.1109/INFOCOMWKSHPS47286.2019.9093749.
  32. N. V. U. Reddy, “Reducing the Network Latency to Maintain Network Stability in UASN by Using Bio-Inspired Algorithms”, 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 139–144. doi: 10.1109/ICAISS58487.2023.10250497.
  33. S. Kaveripakam, R. Chinthaginjala, “Clusteringbased dragonfly optimization algorithm for underwater wireless sensor networks”, Alexandria Engineering Journal, vol. 81, 2023, pp. 580–598. https://doi.org/10.1016/j.aej.2023.09.047
  34. O.V. Kozlov, Y.P. Kondratenko, O.S. Skakodub, “Information Technology for Parametric Optimization of Fuzzy Systems Based on Hybrid Grey Wolf Algorithms”, SN Computer Science, vol. 3, no. 6, 2022. 463. https://doi.org/10.1007/s42979-022-01333-4
  35. Y.P. Kondratenko, A.V. Kozlov, “Parametric optimization of fuzzy control systems based on hybrid particle swarm algorithms with elite strategy”, Journal of Automation and Information Sciences, vol. 51, no. 12, 2019, New York: Begel House Inc., pp. 25–45. DOI: 10.1615/JAutomatIn fScien.v51.i12.40
  36. O.V. Kozlov, “Optimal Selection of Membership Functions Types for Fuzzy Control and Decision Making Systems”, in: Proceedings of the 2nd International Workshop on Intelligent Information Technologies & Systems of Information Security with CEUR-WS, Khmelnytskyi, Ukraine, IntelITSIS 2021, CEUR-WS, Vol-2853, 2021, pp. 238–247.
  37. “Advance trends in soft computing”, M. Jamshidi, V. Kreinovich, J. Kacprzyk, Eds. Cham: Springer-Verlag, 2013. DOI https://doi.org/10.1007/978-3-319-03674-8
  38. J. Kacprzyk, Y. Kondratenko, J. M. Merigo, J. H. Hormazabal, G. Sirbiladze, A. M. Gil-Lafuente, “A Status Quo Biased Multistage Decision Model for Regional Agricultural Socioeconomic Planning Under Fuzzy Information”, In: Y.P. Kondratenko, A.A. Chikrii, V.F. Gubarev, J. Kacprzyk (Eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Dedicated to Professor Vsevolod M. Kuntsevich. Studies in Systems, Decision and Control, Vol. 203. Cham: Springer Nature Switzerland AG, 2019, 201-226. DOI: https://doi.org/10.1007/978-3-030-21927-7_10
  39. O. Kozlov, G. Kondratenko, Z. Gomolka, Y. Kondratenko, “Synthesis and Optimization of Green Fuzzy Controllers for the Reactors of the Specialized Pyrolysis Plants”, Kharchenko V., Kondratenko Y., Kacprzyk J. (Eds) Green IT Engineering: Social, Business and Industrial Applications, Studies in Systems, Decision and Control, Vol 171, 2019, Springer, Cham, 373–396. https://doi.org/10.1007/978-3-030-00253-4_16
  40. I. Atamanyuk, J. Kacprzyk, Y. Kondratenko, M. Solesvik, “Control of Stochastic Systems Based on the Predictive Models of Random Sequences”, In: Y.P. Kondratenko, A.A. Chikrii, V.F. Gubarev, J. Kacprzyk (Eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Dedicated to Professor Vsevolod M. Kuntsevich. Studies in Systems, Decision and Control, vol. 203. Cham: Springer Nature Switzerland AG, 2019, 105–128. https://doi.org/10.1007/978-3-030-21927-7_6
  41. Y.P. Kondratenko, O.V. Kozlov, “Mathematical Model of Ecopyrogenesis Reactor with Fuzzy Parametrical Identification”, Recent Developments and New Direction in Soft-Computing Foundations and Applications, Studies in Fuzziness and Soft Computing, vol. 342, Lotfi A. Zadeh et al. (Eds.). Berlin, Heidelberg: Springer-Verlag, 2016, 439-451. https://doi.org/10.1007/978-3-319-32229-2_30
  42. Y.P. Kondratenko, O.V. Korobko, O.V. Kozlov, “Frequency Tuning Algorithm for Loudspeaker Driven Thermoacoustic Refrigerator Optimization”, in: K. J. Engemann, A. M. Gil-Lafuente, J. M. Merigo (Eds.), Lecture Notes in Business Information Processing, volume 115 of Modeling and Simulation in Engineering, Economics and Management, Springer-Verlag, Berlin, Heidelberg: 2012, pp. 270–279. https://doi.org/10.1007/978-3-642-30433-0_27.
  43. M. Dong, et al., “Energy-saving and Fault-tolerant Topology for Underwater Acoustic Sensor Networks”, OCEANS 2022, Hampton Roads, Hampton Roads, VA, USA, 2022, pp. 1–5. doi: 10.1109/OC EANS47191.2022.9977158
  44. M. Hamidzadeh, N. Forghani, A. Movaghar, “A new hierarchal and scalable architecture for performance enhancement of large scale underwater sensor networks”, 2011 IEEE Symposium on Computers & Informatics, Kuala Lumpur, Malaysia, 2011, pp. 520–525. doi: 10.1109/ISCI.2011.5958970
  45. G.H. Adday, et al., “Fault Tolerance Structures in Wireless Sensor Networks (WSNs): Survey, Classification, and Future Directions”, Sensors 2022, 22, 6041. https://doi.org/10.3390/s22166041
  46. L. Vihman, M. Kruusmaa, J. Raik, “Systematic Review of Fault Tolerant Techniques in Underwater Sensor Networks”, Sensors 2021, 21, 3264. https://doi.org/10.3390/s21093264
  47. N. Goyal, M. Dave, A. K. Verma, “A novel fault detection and recovery technique for clusterbased underwater wireless sensor networks”, Int. J. Commun. Syst. 2018, vol. 31, pp. 1–14. https://doi.org/10.1002/dac.3485
  48. Z. Zhou, et al., “E-CARP: An Energy Efficient Routing Protocol for UWSNs in the Internet of Underwater Things”, IEEE Sensors Journal, vol. 16, no. 11, pp. 4072–4082, 2016. doi: 10.1109/JSEN.2015.2437904
  49. Y. Noh et al., “HydroCast: Pressure Routing for Underwater Sensor Networks”, IEEE Transactions on Vehicular Technology, vol. 65, no. 1, 2016, pp. 333–347. doi: 10.1109/TVT.2015.2 395434
  50. N. Desai, S. Punnekkat, “Enhancing Fault Detection in Time Sensitive Networks using Machine Learning”, 2020 International Conference on COMmunication Systems &NETworkS (COMSNETS), Bengaluru, India, 2020, pp. 714–719. doi: 10.1109/COMSNETS48256.2020.9027357
  51. A. Shahraki, et al., “A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms”, IEEE Transactions on Network and Service Management, vol. 18, no. 2, 2021, pp. 2242–2274. doi: 10.1109/TNSM.2020.3035315
  52. K. Wang, et al., “An Energy-Efficient Reliable Data Transmission Scheme for Complex Environmental Monitoring in Underwater Acoustic Sensor Networks”, IEEE Sensors Journal, vol. 16, no. 11, 2016, pp. 4051–4062. doi: 10.1109/JSEN.2015.2428712
  53. Y. Wang, L. Cao, T. A. Dahlberg, “Efficient Fault Tolerant Topology Control for ThreeDimensional Wireless Networks”, 2008 Proceedings of 17th International Conference on Computer Communications and Networks, St. Thomas, VI, USA, 2008, pp. 1–6. doi: 10.1109/ICCCN.2008.ECP.75
  54. K. A. Alansary, et al., “Networked Control System Architecture for Autonomous Underwater Vehicles with Redundant Sensors”, 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 2019, pp. 1–4. doi: 10.1109/ECAI46879.2019.9042033
  55. D. Li, J. Du, L. Liu, “A data forwarding algorithm based on Markov thought in underwater wireless sensor networks”, International Journal of Distributed Sensor Networks, 2017, 13(2). doi: 10.1177/1550147717691982
  56. S. Petridou, S. Basagiannis, M. Roumeliotis, “Survivability Analysis Using Probabilistic Model Checking: A Study on Wireless Sensor Networks”, IEEE Systems Journal, vol. 7, no. 1, 2013, pp. 4–12. doi: 10.1109/JSYST.2012.2224612
  57. M. Martalo, S. Busanelli, G. Ferrari, “Multihop IEEE 802.15.4 Wireless Networks With Finite Node Buffers: Markov Chain-Based Analysis”, 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications, Bologna, Italy, 2008, pp. 644–648. doi: 10.1109/ISSSTA.2008.126
  58. L. Xie, P. E. Heegaard, Y. Jiang, “Non-Markovian Survivability Assessment Model for Infrastructure Wireless Networks”, 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018, pp. 1–5. doi: 10.1109/ISWCS.2018.8491067
  59. S.N. Pelykh, M.V. Maksimov, “The method of fuel rearrangement control considering fuel element cladding damage and burnup”, Problems of Atomic Science and Technology, vol. 87, no. 5, 2013, 84–90. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_5/article_2013_5_84a.pdf
  60. M.V. Maksimov, S.N. Pelykh, R.L. Gontar, “Principles of controlling fuel-element cladding lifetime in variable VVER-1000 loading regimes”, Atomic Energy, vol. 112, no. 4, 2012, 241-249. https ://doi.org/10.1007/s10512-012-9552-3
  61. I.G. Maysyan, M. V. Maksimov, “Methodology for Assessing the Reliability of ACS TP Software Using Failure Recovery”, Bulletin of Cherkasy State Technological University, vol. 3, 2006, pp. 8–13. (In Russian).
DOI: https://doi.org/10.14313/jamris-2025-006 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 49 - 64
Submitted on: Feb 1, 2024
Accepted on: Sep 4, 2024
Published on: Mar 31, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Maksim Maksimov, Oleksiy Kozlov, Serhii Retsenko, Viktoriia Kryvda, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.