Have a personal or library account? Click to login

Formation Control of Multi-agent Nonlinear Systems using The State-Dependent Riccati Equation

Open Access
|Mar 2025

References

  1. G. Beni, “The concept of cellular robotic system”. Proceedings 1988 IEEE International Symposium on Intelligent Control, 1988, pp. 57–58.
  2. V. Genovese, P. Dario, R. Magni, and L. Odetti, “Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants”. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, 1992, pp. 1575–1582.
  3. N. Mitsumoto, T. Fukuda, K. Shimojima, and A. Ogawa, “Micro autonomous robotic system and biologically inspired immune swarm strategy as a multi agent robotic system”. Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 2, 1995, pp. 2187–2192.
  4. T. Ueyama, T. Fukuda, and F. Arai, “Structure configuration using genetic algorithm for cellular robotic system”. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, 1992, pp. 1542–1549.
  5. G. S. Chirikjian, “Kinematics of a metamorphic robotic system”. Proceedings of the 1994 IEEE international conference on robotics and automation, 1994, pp. 449–455.
  6. G. Beni and P. Liang, “Pattern reconfiguration in swarms-convergence of a distributed asynchronous and bounded iterative algorithm”, IEEE Transactions on Robotics and Automation, vol. 12, no. 3, 1996, pp. 485–490.
  7. C. R. Kube and E. Bonabeau, “Cooperative transport by ants and robots”, Robotics and Autonomous Systems, vol. 30, no. 1-2, 2000, pp. 85–101.
  8. M. J. Krieger, J.-B. Billeter, and L. Keller, “Antlike task allocation and recruitment in cooperative robots”, Nature, vol. 406, no. 6799, 2000, pp. 992–995.
  9. L. Yang, J. Yu, S. Yang, B. Wang, B. J. Nelson, and L. Zhang, “A survey on swarm microrobotics”, IEEE Transactions on Robotics, 2021.
  10. L. Yang and L. Zhang, “Motion control in magnetic microrobotics: From individual and multiple robots to swarms”, Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, 2021, pp. 509–534.
  11. Y. Fu, H. Yu, X. Zhang, P. Malgaretti, V. Kishore, and W. Wang, “Microscopic swarms: From active matter physics to biomedical and environmental applications”, Micromachines, vol. 13, no. 2, 2022, 295.
  12. A. R. Cheraghi, S. Shahzad, and K. Graffi, “Past, present, and future of swarm robotics”. Proceedings of SAI Intelligent Systems Conference, 2021, pp. 190–233.
  13. G. A. Cardona, J. Ramirez-Rugeles, E. MojicaNava, and J. M. Calderon, “Visual victim detection and quadrotor-swarm coordination control in search and rescue environment”, International Journal of Electrical and Computer Engineering, vol. 11, no. 3, 2021, 2079.
  14. G. Kumar, A. Anwar, A. Dikshit, A. Poddar, U. Soni, and W. K. Song, “Obstacle avoidance for a swarm of unmanned aerial vehicles operating on particle swarm optimization: A swarm intelligence approach for search and rescue missions”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 2, 2022, pp. 1–18.
  15. R. Krzysiak and S. Butail, “Information-based control of robots in search-and-rescue missions with human prior knowledge”, IEEE Transactions on Human-Machine Systems, vol. 52, no. 1, 2021, pp. 52–63.
  16. H. Suresha, D. Sumithra, J. Renuka, B. Deepika, and N. Meghana, “Application of swarm robotics systems to marine environmental monitoring”, International Conference on Data Science, Machine Learning, and Applications, 202 2, pp. 1075–1083.
  17. C. Carbone, D. Albani, F. Magistri, D. Ognibene, C. Stachniss, G. Kootstra, D. Nardi, and V. Trianni, “Monitoring and mapping of crop fields with UAV swarms based on information gain”. International Symposium Distributed Autonomous Robotic Systems, 2021, pp. 306–319.
  18. Y. Liu and K. M. Passino, “Swarm intelligence: Literature overview”, Department of Electrical Engineering, The Ohio State University, 2000.
  19. M. H. Korayem and S. R. Nekoo, “Controller design of cooperative manipulators using statedependent Riccati equation”, Robotica, vol. 36, no. 4, 2018, pp. 484–515.
  20. L. Yan, T. Stouraitis, and S. Vijayakumar, “Decentralized ability-aware adaptive control for multirobot collaborative manipulation”, IEEE Robotics and Automation Letters, vol. 6, no. 2, 2021, pp. 2311–2318.
  21. J. Hu, P. Bhowmick, I. Jang, F. Arvin, and A. Lanzon, “A decentralized cluster formation containment framework for multirobot systems”, IEEE Transactions on Robotics, vol. 37, no. 6, 2021, pp. 1936–1955.
  22. B. Geranmehr and E. Khanmirza, “Optimal consensus control of multi-agent systems based on the state-dependent Riccati equation”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 09544062221091526.
  23. Z. A. Ali and H. Zhangang, “Multi-unmanned aerial vehicle swarm formation control using hybrid strategy”, Transactions of the Institute of Measurement and Control, vol. 43, no. 12, 2021, pp. 2689–2701.
  24. S. P. Hou and C. C. Cheah, “Multiplicative potential energy function for swarm control”. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 4363–4368.
  25. J. Cheng, W. Cheng, and R. Nagpal, “Robust and self-repairing formation control for swarms of mobile agents”. AAAI, vol. 5, 2005.
  26. S. P. Hou, C.-C. Cheah, and J.-J. E. Slotine, “Dynamic region following formation control for a swarm of robots”. 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 1929–1934.
  27. J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large nano-quadcopter swarm”. 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3299–3304.
  28. E. Teruel, R. Aragues, and G. López-Nicolás, “A distributed robot swarm control for dynamic region coverage”, Robotics and Autonomous Systems, vol. 119, 2019, pp. 51–63.
  29. G. Raja, K. Kottursamy, A. Theetharappan, K. Cengiz, A. Ganapathisubramaniyan, R. Kharel, and K. Yu, “Dynamic polygon generation for flexible pattern formation in large-scale UAV swarm networks”. 2020 IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1–6.
  30. S. S. Ge, C.-H. Fua, and W.-M. Liew, “Swarm formations using the general formation potential function”. IEEE Conference on Robotics, Automation and Mechatronics, 2004., vol. 2, 2004, pp. 655–660.
  31. D. Grossman, I. Aranson, and E. B. Jacob, “Emergence of agent swarm migration and vortex formation through inelastic collisions”, New Journal of Physics, vol. 10, no. 2, 2008, 023036.
  32. Z. Yang, Q. Zhang, and Z. Chen, “Formation control of multi-agent systems with region constraint”, Complexity, vol. 2019, 2019.
  33. J. Wang and M. Xin, “Integrated optimal formation control of multiple unmanned aerial vehicles”, IEEE Transactions on Control Systems Technology, vol. 21, no. 5, 2012, pp. 1731–1744.
  34. S. A. Kumar, J. Vanualailai, B. Sharma, and A. Prasad, “Velocity controllers for a swarm of unmanned aerial vehicles”, Journal of Industrial Information Integration, vol. 22, 2021, 100198.
  35. B. S. Park and S. J. Yoo, “An error transformation approach for connectivity-preserving and collision-avoiding formation tracking of networked uncertain underactuated surface vessels”, IEEE Transactions on Cybernetics, vol. 49, no. 8, 2018, pp. 2955–2966.
  36. B. S. Park and S. J. Yoo, “Connectivity-maintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels”, Automatica, vol. 127, 2021, 109501.
  37. R. Babazadeh and R. Selmic, “Distance-based multiagent formation control with energy constraints using SDRE”, IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 1, 2019, pp. 41–56.
  38. M. Davoodi and J. M. Velni, “Heterogeneity-aware graph partitioning for distributed deployment of multiagent systems”, IEEE Transactions on Cybernetics, vol. 52, no. 4, 2022, pp. 2578–2588.
  39. S. R. Nekoo, J. Yao, A. Suarez, R. Tapia, and A. Ollero, “Leader-follower formation control of a large-scale swarm of satellite system using the state-dependent Riccati equation: Orbit-to-orbit and in-same-orbit regulation”. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, pp. 10700–10707.
  40. H. Rouzegar, A. Khosravi, and P. Sarhadi, “Spacecraft formation flying control under orbital perturbations by state-dependent Riccati equation method in the presence of on–off actuators”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 8, 2019, pp. 2853–2867.
  41. R. Babazadeh and R. Selmic, “Anoptimal displacement-based leader-follower formation control for multi-agent systems with energy consumption constraints”. 2018 26th Mediterranean Conference on Control and Automation (MED), 2018, pp. 179–184.
  42. M. Tannous, G. Franzini, and M. Innocenti, “Statedependent Riccati equation control for spacecraft formation flying in the circular restricted three-body problem”. 2018 Astrodynamics Conference; American Astronautical Society: Spring-field, VA, USA, 2018.
  43. G. Rinaldo, E. Rafikova, and M. Rafikov, “Control of multiple mobile robots in dynamic formations”. International Symposium on Dynamic Problems of Mechanics, 2017, pp. 359–369.
  44. S. Kumbasar and O. Tekinalp, “Fuzzy logic guidance of formation flight”. 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 167–175.
  45. L. Felicetti and G. B. Palmerini, “Attitude coordination strategies in satellite constellations and formation flying”. 2015 IEEE Aerospace Conference, 2015, pp. 1–13.
  46. J.-I. Park, H.-E. Park, S.-Y. Park, and K.-H. Choi, “Hardware-in-the-loop simulations of gps-based navigation and control for satellite formation flying”, Advances in Space Research, vol. 46, no. 11, 2010, pp. 1451–1465.
  47. D. Stansbery and J. Cloutier, “Nonlinear control of satellite formation flight”. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2000, 4436.
  48. A. A. Kabanov and V. A. Kramar, “Cooperative control of underwater manipulators based on the SDRE method”. 2021 International Russian Automation Conference (RusAutoCon), 2021, pp. 515–520.
  49. N. Nasiri, A. Fakharian, and M. B. Menhaj, “An uncertain optimal factorization of cooperative manipulators for robust optimal control schemes”. 2022 30th International Conference on Electrical Engineering (ICEE), 2022, pp. 582–586.
  50. X. Lin, X. Shi, and S. Li, “Optimal cooperative control for formation flying spacecraft with collision avoidance”, Science Progress, vol. 103, no. 1, 2020, 0036850419884432.
  51. R. Babaie and A. F. Ehyaie, “Robust optimal motion planning approach to cooperative grasping and transporting using multiple UAVs based on SDRE”, Transactions of the Institute of Measurement and Control, vol. 39, no. 9, 2017, pp. 1391–1408.
  52. M. H. Korayem and S. R. Nekoo, “The SDRE control of mobile base cooperative manipulators: Collision free path planning and moving obstacle avoidance”, Robotics and Autonomous Systems, vol. 86, 2016, pp. 86–105.
  53. D.Li,S.S. Ge, W. He, G. Ma, and L. Xie, “Multilayer formation control of multi-agent systems”, Auto-matica, vol. 109, 2019, 108558.
  54. J. Wu, Q. Deng, T. Han, and H.-C. Yan, “Bipartite output regulation for singular heterogeneous multi-agent systems on signed graph”, Asian Journal of Control, vol. 24, no. 5, 2022, pp. 2452–2460.
  55. Z. Pan, Z. Sun, H. Deng, and D. Li, “A multilayer graph for multiagent formation and trajectory tracking control based on MPC algorithm”, IEEE Transactions on Cybernetics, vol. 52, no. 12, 2021, pp. 13586–13597.
  56. T. Çimen, “State-dependent Riccati equation (SDRE) control: A survey”, IFAC Proceedings Volumes, vol. 41, no. 2, 2008, pp. 3761–3775.
  57. S. R. Nekoo, “Output-and state-dependent Riccati equation: An output feedback controller design”, Aerospace Science and Technology, vol. 126, 2022, 107649.
  58. S. S. Mohammadi and H. Khaloozadeh, “Optimal motion planning of unmanned ground vehicle using SDRE controller in the presence of obstacles”. 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), 2016, pp. 167–171.
  59. M. Asgari and H. N. Foghahayee, “State dependent Riccati equation (SDRE) controller design for moving obstacle avoidance in mobile robot”, SN Applied Sciences, vol. 2, no. 11, 2020, pp. 1–29.
  60. S. R. Nekoo and B. Geranmehr, “Nonlinear observer-based optimal control using the state-dependent Riccati equation for a class of non-affine control systems”, Journal of Control Engineering and Applied Informatics, vol. 16, no. 2, 2014, pp. 5–13.
  61. S. Nekoo, J. Acosta, A. Gomez-Tamm, and A. Ollero, “Optimized thrust allocation of variable-pitch propellers quadrotor control: A comparative study on flip maneuver”. 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), 2019, pp. 86–95.
  62. S. R. Nekoo, J. Á. Acosta, and A. Ollero, “Quaternion-based state-dependent differential Riccati equation for quadrotor drones: Regulation control problem in aerobatic flight”, Robotica, 2022, pp. 1–16.
  63. S. R. Nekoo, J. Á. Acosta, and A. Ollero, “Fully coupled six-dof nonlinear suboptimal control of a quadrotor: Application to variable-pitch rotor design”. Robot 2019: Fourth Iberian Robotics Conference: Advances in Robotics, Volume 2, 2020, pp. 72–83.
  64. Z. Zuo, “Trajectory tracking control design with command-filtered compensation for a quadrotor”, IET Control Theory & Applications, vol. 4, no. 11, 2010, pp. 2343–2355.
  65. S. R. Nekoo, J. Á. Acosta, and A. Ollero, “Gravity compensation and optimal control of actuated multibody system dynamics”, IET Control Theory & Applications, vol. 16, no. 1, 2022, pp. 79–93.
  66. Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile manipulator”. Proceedings of the 31st IEEE Conference on Decision and Control, 1992, pp. 2643–2648.
  67. M. Korayem, S. Nekoo, and A. Korayem, “Finite time SDRE control design for mobile robots with differential wheels”, Journal of Mechanical Science and Technology, vol. 30, no. 9, 2016, pp. 4353–4361.
DOI: https://doi.org/10.14313/jamris-2025-003 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 17 - 32
Submitted on: Jan 10, 2024
Accepted on: Jul 23, 2024
Published on: Mar 31, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Saeed Rafee Nekoo, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.