References
- Abu-Khalaf, M. and Lewis, F.L. (2005). Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, Automatica 41(5): 779–791.
- Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K.G., Lewis, F.L. and Dixon, W.E. (2013). A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems, Automatica 49(1): 82–92.
- Chen, A.S. and Herrmann, G. (2019). Adaptive optimal control via continuous-time q-learning for unknown nonlinear affine systems, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, pp. 1007–1012.
- Chen, J., Shuai, Z., Zhang, H. and Zhao, W. (2020). Path following control of autonomous four-wheel-independent-drive electric vehicles via second-order sliding mode and nonlinear disturbance observer techniques, IEEE Transactions on Industrial Electronics 68(3): 2460–2469.
- Ding, C., Ding, S., Wei, X. and Mei, K. (2022). Output feedback sliding mode control for path-tracking of autonomous agricultural vehicles, Nonlinear Dynamics 110(3): 2429–2445.
- Elsisi, M. and Ebrahim, M.A. (2021). Optimal design of low computational burden model predictive control based on SSDA towards autonomous vehicle under vision dynamics, International Journal of Intelligent Systems 36(11): 6968–6987.
- Faryadi, S. and Mohammadpour Velni, J. (2021). A reinforcement learning-based approach for modeling and coverage of an unknown field using a team of autonomous ground vehicles, International Journal of Intelligent Systems 36(2): 1069–1084.
- Gahinet, P., Nemirovskii, A., Laub, A.J. and Chilali, M. (1994). The LMI control toolbox, Proceedings of the 1994 33rd IEEE Conference on Decision and Control, Lake Buena Vista, USA, pp. 2038–2041.
- Hu, C., Jing, H., Wang, R., Yan, F. and Chadli, M. (2016). Robust h∞ output-feedback control for path following of autonomous ground vehicles, Mechanical Systems and Signal Processing 70: 414–427.
- Jin, X., Haddad, W.M. and Yucelen, T. (2017). An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems, IEEE Transactions on Automatic Control 62(11): 6058–6064.
- Lakhekar, G.V., Waghmare, L.M. and Roy, R.G. (2019). Disturbance observer-based fuzzy adapted s-surface controller for spatial trajectory tracking of autonomous underwater vehicle, IEEE Transactions on Intelligent Vehicles 4(4): 622–636.
- Lee, J.Y., Park, J.B. and Choi, Y.H. (2014). Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations, IEEE Transactions on Neural Networks and Learning Systems 26(5): 916–932.
- Lewis, F.L. and Vrabie, D. (2009). Reinforcement learning and adaptive dynamic programming for feedback control, IEEE Circuits and Systems Magazine 9(3): 32–50.
- Lv, Y., Ren, X. and Na, J. (2019). Adaptive optimal tracking controls of unknown multi-input systems based on nonzero-sum game theory, Journal of the Franklin Institute 356(15): 8255–8277.
- Ma, G., Ghasemi, M. and Song, X. (2017). Integrated powertrain energy management and vehicle coordination for multiple connected hybrid electric vehicles, IEEE Transactions on Vehicular Technology 67(4): 2893–2899.
- Moreno, J.A. and Osorio, M. (2012). Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control 57(4): 1035–1040.
- Na, J., Mahyuddin, M.N., Herrmann, G., Ren, X. and Barber, P. (2015). Robust adaptive finite-time parameter estimation and control for robotic systems, International Journal of Robust and Nonlinear Control 25(16): 3045–3071.
- Peng, Y., Chen, J. and Ma, Y. (2019). Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems, Nonlinear Dynamics 96(1): 363–387.
- Tan, L.N. (2018). Distributed h∞ optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(11): 4719–4731.
- Tan, L.N. (2019). Event-triggered distributed h∞ constrained control of physically interconnected large-scale partially unknown strict-feedback systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(4): 2444–2456.
- Vamvoudakis, K.G. and Lewis, F.L. (2010). Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem, Automatica 46(5): 878–888.
- Wang, D. (2019). Robust policy learning control of nonlinear plants with case studies for a power system application, IEEE Transactions on Industrial Informatics 16(3): 1733–1741.
- Wang, X., Lv, B., Wang, K. and Zhang, R. (2023). ASTS: Autonomous switching of task-level strategies, International Journal of Applied Mathematics and Computer Science 33(4): 553–568, DOI: 10.34768/amcs-2023-0040.
- Wang, X. and Ye, X. (2022). Consciousness-driven reinforcement learning: An online learning control framework, International Journal of Intelligent Systems 37(1): 770–798.
- Werbos, P. (1992). Approximate dynamic programming for real-time control and neural modeling, in D.A. White and D.A. Sofge (Eds.), Handbook of Intelligent Control, Van Nostrand Reinhold, New York, Chapter 13.
- Xiong, X., Kamal, S. and Jin, S. (2021). Adaptive gains to super-twisting technique for sliding mode design, Asian Journal of Control 23(1): 362–373.
- Xu, N., Niu, B., Wang, H., Huo, X. and Zhao, X. (2021). Single-network ADP for solving optimal event-triggered tracking control problem of completely unknown nonlinear systems, International Journal of Intelligent Systems 36(9): 4795–4815.
- Yan, Z., Song, B., Zhang, Y., Zhang, K., Mao, Z. and Hu, Y. (2018). A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles, IEEE Transactions on Power Electronics 34(5): 4005–4008.
- Zhang, K., Su, R., Zhang, H. and Tian, Y. (2021). Adaptive resilient event-triggered control design of autonomous vehicles with an iterative single critic learning framework, IEEE Transactions on Neural Networks and Learning Systems 32(12): 5502–5511.