Have a personal or library account? Click to login
An Optimal Control Method for Trajectory Tracking Error Detection of Autonomous Vehicles Cover

An Optimal Control Method for Trajectory Tracking Error Detection of Autonomous Vehicles

Open Access
|Dec 2025

References

  1. Abu-Khalaf, M. and Lewis, F.L. (2005). Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, Automatica 41(5): 779–791.
  2. Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K.G., Lewis, F.L. and Dixon, W.E. (2013). A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems, Automatica 49(1): 82–92.
  3. Chen, A.S. and Herrmann, G. (2019). Adaptive optimal control via continuous-time q-learning for unknown nonlinear affine systems, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, pp. 1007–1012.
  4. Chen, J., Shuai, Z., Zhang, H. and Zhao, W. (2020). Path following control of autonomous four-wheel-independent-drive electric vehicles via second-order sliding mode and nonlinear disturbance observer techniques, IEEE Transactions on Industrial Electronics 68(3): 2460–2469.
  5. Ding, C., Ding, S., Wei, X. and Mei, K. (2022). Output feedback sliding mode control for path-tracking of autonomous agricultural vehicles, Nonlinear Dynamics 110(3): 2429–2445.
  6. Elsisi, M. and Ebrahim, M.A. (2021). Optimal design of low computational burden model predictive control based on SSDA towards autonomous vehicle under vision dynamics, International Journal of Intelligent Systems 36(11): 6968–6987.
  7. Faryadi, S. and Mohammadpour Velni, J. (2021). A reinforcement learning-based approach for modeling and coverage of an unknown field using a team of autonomous ground vehicles, International Journal of Intelligent Systems 36(2): 1069–1084.
  8. Gahinet, P., Nemirovskii, A., Laub, A.J. and Chilali, M. (1994). The LMI control toolbox, Proceedings of the 1994 33rd IEEE Conference on Decision and Control, Lake Buena Vista, USA, pp. 2038–2041.
  9. Hu, C., Jing, H., Wang, R., Yan, F. and Chadli, M. (2016). Robust h output-feedback control for path following of autonomous ground vehicles, Mechanical Systems and Signal Processing 70: 414–427.
  10. Jin, X., Haddad, W.M. and Yucelen, T. (2017). An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems, IEEE Transactions on Automatic Control 62(11): 6058–6064.
  11. Lakhekar, G.V., Waghmare, L.M. and Roy, R.G. (2019). Disturbance observer-based fuzzy adapted s-surface controller for spatial trajectory tracking of autonomous underwater vehicle, IEEE Transactions on Intelligent Vehicles 4(4): 622–636.
  12. Lee, J.Y., Park, J.B. and Choi, Y.H. (2014). Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations, IEEE Transactions on Neural Networks and Learning Systems 26(5): 916–932.
  13. Lewis, F.L. and Vrabie, D. (2009). Reinforcement learning and adaptive dynamic programming for feedback control, IEEE Circuits and Systems Magazine 9(3): 32–50.
  14. Lv, Y., Ren, X. and Na, J. (2019). Adaptive optimal tracking controls of unknown multi-input systems based on nonzero-sum game theory, Journal of the Franklin Institute 356(15): 8255–8277.
  15. Ma, G., Ghasemi, M. and Song, X. (2017). Integrated powertrain energy management and vehicle coordination for multiple connected hybrid electric vehicles, IEEE Transactions on Vehicular Technology 67(4): 2893–2899.
  16. Moreno, J.A. and Osorio, M. (2012). Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control 57(4): 1035–1040.
  17. Na, J., Mahyuddin, M.N., Herrmann, G., Ren, X. and Barber, P. (2015). Robust adaptive finite-time parameter estimation and control for robotic systems, International Journal of Robust and Nonlinear Control 25(16): 3045–3071.
  18. Peng, Y., Chen, J. and Ma, Y. (2019). Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems, Nonlinear Dynamics 96(1): 363–387.
  19. Tan, L.N. (2018). Distributed h∞ optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(11): 4719–4731.
  20. Tan, L.N. (2019). Event-triggered distributed h∞ constrained control of physically interconnected large-scale partially unknown strict-feedback systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(4): 2444–2456.
  21. Vamvoudakis, K.G. and Lewis, F.L. (2010). Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem, Automatica 46(5): 878–888.
  22. Wang, D. (2019). Robust policy learning control of nonlinear plants with case studies for a power system application, IEEE Transactions on Industrial Informatics 16(3): 1733–1741.
  23. Wang, X., Lv, B., Wang, K. and Zhang, R. (2023). ASTS: Autonomous switching of task-level strategies, International Journal of Applied Mathematics and Computer Science 33(4): 553–568, DOI: 10.34768/amcs-2023-0040.
  24. Wang, X. and Ye, X. (2022). Consciousness-driven reinforcement learning: An online learning control framework, International Journal of Intelligent Systems 37(1): 770–798.
  25. Werbos, P. (1992). Approximate dynamic programming for real-time control and neural modeling, in D.A. White and D.A. Sofge (Eds.), Handbook of Intelligent Control, Van Nostrand Reinhold, New York, Chapter 13.
  26. Xiong, X., Kamal, S. and Jin, S. (2021). Adaptive gains to super-twisting technique for sliding mode design, Asian Journal of Control 23(1): 362–373.
  27. Xu, N., Niu, B., Wang, H., Huo, X. and Zhao, X. (2021). Single-network ADP for solving optimal event-triggered tracking control problem of completely unknown nonlinear systems, International Journal of Intelligent Systems 36(9): 4795–4815.
  28. Yan, Z., Song, B., Zhang, Y., Zhang, K., Mao, Z. and Hu, Y. (2018). A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles, IEEE Transactions on Power Electronics 34(5): 4005–4008.
  29. Zhang, K., Su, R., Zhang, H. and Tian, Y. (2021). Adaptive resilient event-triggered control design of autonomous vehicles with an iterative single critic learning framework, IEEE Transactions on Neural Networks and Learning Systems 32(12): 5502–5511.
DOI: https://doi.org/10.61822/amcs-2025-0040 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 563 - 575
Submitted on: Apr 10, 2025
|
Accepted on: Sep 25, 2025
|
Published on: Dec 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Peng-Fei Feng, Bingyi Jia, Hui-Qing Jin, Guang Wang, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.