References
- Agamawi, Y.M. and Rao, A.V. (2020). CGPOPS: A C++ software for solving multiple-phase optimal control problems using adaptive Gaussian quadrature collocation and sparse nonlinear programming, ACM Transactions on Mathematical Software 46(3): 1–38.
- Aguilar-Ibanez, C., Suarez-Castanon, M.S., Saldivar, B., Jimenez-Lizarraga, M.A., de Jesus Rubio, J. and Mendoza-Mendoza, J. (2024). Algebraic active disturbance rejection to control a generalized uncertain second-order flat system, International Journal of Applied Mathematics and Computer Science 34(2): 185–198, DOI: 10.61822/amcs-2024-0013.
- Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B. and Diehl, M. (2019). CasADi: A software framework for nonlinear optimization and optimal control, Mathematical Programming Computation 11(1): 1–36.
- Becerra, V.M. (2010). Solving complex optimal control problems at no cost with PSOPT, 2010 IEEE International Symposium on Computer-Aided Control System Design, Yokohama, Japan, pp. 1391–1396.
- Betts, J.T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, SIAM, Philadelphia.
- Betts, J.T. and Erb, S.O. (2003). Optimal low thrust trajectories to the moon, SIAM Journal on Applied Dynamical Systems 2(2): 144–170.
- Biegler, L.T. and Zavala, V.M. (2009). Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization, Computers & Chemical Engineering 33(3): 575–582.
- Brockett, R.W. (2005). Robotic manipulators and the product of exponentials formula, in P.A. Fuhrmanni (Ed.), Mathematical Theory of Networks and Systems, Springer, Berlin, pp. 120–129.
- Budhiraja, R., Carpentier, J., Mastalli, C. and Mansard, N. (2018). Differential dynamic programming for multi-phase rigid contact dynamics, 2018 IEEE–RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, pp. 1–9.
- Cardona-Ortiz, D., Paz, A. and Arechavaleta, G. (2020). Exploiting sparsity in robot trajectory optimization with direct collocation and geometric algorithms, 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 469–475.
- Carlier, G. (2022). Classical and Modern Optimization, World Scientific, London.
- Fan, T., Schultz, J. and Murphey, T. (2018). Efficient computation of higher-order variational integrators in robotic simulation and trajectory optimization, in M. Morales et al. (Eds), Algorithmic Foundations of Robotics, Springer, Cham, pp. 689–706.
- Featherstone, R. (2014). Rigid Body Dynamics Algorithms, Springer, New York.
- Hereid, A. and Ames, A.D. (2017). FROST∗: Fast robot optimization and simulation toolkit, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, pp. 719–726.
- Houska, B., Ferreau, H.J. and Diehl, M. (2011). ACADO toolkit—An open-source framework for automatic control and dynamic optimization, Optimal Control Applications and Methods 32(3): 298–312.
- Howell, T.A., Jackson, B.E. and Manchester, Z. (2019). ALTRO: A fast solver for constrained trajectory optimization, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 7674–7679.
- Johnson, E.R. and Murphey, T.D. (2009). Scalable variational integrators for constrained mechanical systems in generalized coordinates, IEEE Transactions on Robotics 25(6): 1249–1261.
- Johnson, E., Schultz, J. and Murphey, T. (2015). Structured linearization of discrete mechanical systems for analysis and optimal control, IEEE Transactions on Automation Science and Engineering 12(1): 140–152.
- Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct collocation, SIAM Review 59(4): 849–904.
- Kelly, M.P. (2019). DirCol5i: Trajectory optimization for problems with high-order derivatives, Journal of Dynamic Systems, Measurement, and Control 141(3).
- Kobilarov, M.B. and Marsden, J.E. (2011). Discrete geometric optimal control on Lie groups, IEEE Transactions on Robotics 27(4): 641–655.
- Kobilarov, M. and Sukhatme, G. (2007). Optimal control using nonholonomic integrators, Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 1832–1837.
- Lee, J., Liu, C.K., Park, F.C. and Srinivasa, S.S. (2020). A linear-time variational integrator for multibody systems, in K. Goldberg et al. (Eds), Algorithmic Foundations of Robotics XII, Springer, Cham, pp. 352–367.
- Leineweber, D. B., Sch¨afer, A., Bock, H.G. and Schlöder, J. P. (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part II: Software aspects and applications, Computers & Chemical Engineering 27(2): 167–174.
- Leyendecker, S., Ober-Blobaum, S., Marsden, J.E. and Ortiz, M. (2010). Discrete mechanics and optimal control for constrained systems, Optimal Control Applications and Methods 31(6): 505–528.
- Liu, G., Wu, S., Zhu, L., Wang, J. and Lv, Q. (2022). Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction, International Journal of Applied Mathematics and Computer Science 32(1): 11–21, DOI: 10.34768/amcs-2022-0002.
- Manchester, Z., Doshi, N., Wood, R.J. and Kuindersma, S. (2019). Contact-implicit trajectory optimization using variational integrators, International Journal of Robotics Research 38(12-13): 1463–1476.
- Manns, P. and Mombaur, K. (2017). Towards discrete mechanics and optimal control for complex models, IFACPapersOnLine 50(1): 4812–4818.
- Marsden, J.E. and West, M. (2001). Discrete mechanics and variational integrators, Acta Numerica 10(10): 357–514.
- Mastalli, C., Budhiraja, R., Merkt, W., Saurel, G., Hammoud, B., Naveau, M., Carpentier, J., Righetti, L., Vijayakumar, S. and Mansard, N. (2020). Crocoddyl: An efficient and versatile framework for multi-contact optimal control, 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 2536–2542.
- Mayne, D. (1966). A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems, International Journal of Control 3(1): 85–95.
- Ober-Blöbaum, S., Junge, O. and Marsden, J.E. (2011). Discrete mechanics and optimal control: An analysis, ESAIM: Control, Optimisation and Calculus of Variations 17(2): 322–352.
- Orin, D.E., Goswami, A. and Lee, S.-H. (2013). Centroidal dynamics of a humanoid robot, Autonomous Robots 35(2-3): 161–176.
- Park, F.C., Kim, B., Jang, C. and Hong, J. (2018). Geometric algorithms for robot dynamics: A tutorial review, Applied Mechanics Reviews 70(1): 010803.
- Rao, A.V. (2009). A survey of numerical methods for optimal control, Advances in the Astronautical Sciences 135(1): 497–528.
- Rohmer, E., Singh, S.P.N. and Freese, M. (2013). V-REP: A versatile and scalable robot simulation framework, International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 1321–1326.
- Selig, J.M. (2004). Geometric Fundamentals of Robotics, Springer, New York.
- Sun, Z., Tian, Y., Li, H. and Wang, J. (2016). A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discrete mechanics and optimal control, Optimal Control Applications and Methods 37(6): 1139–1161.
- Zhang, W., Wang, D. and Inanc, T. (2018). A multiphase DMOC-based trajectory optimization method, Optimal Control Applications and Methods 39(1): 114–129.