Have a personal or library account? Click to login
DMOC–Based Robot Trajectory Optimization with Analytical First–Order Information Cover

DMOC–Based Robot Trajectory Optimization with Analytical First–Order Information

Open Access
|Apr 2025

References

  1. Agamawi, Y.M. and Rao, A.V. (2020). CGPOPS: A C++ software for solving multiple-phase optimal control problems using adaptive Gaussian quadrature collocation and sparse nonlinear programming, ACM Transactions on Mathematical Software 46(3): 1–38.
  2. Aguilar-Ibanez, C., Suarez-Castanon, M.S., Saldivar, B., Jimenez-Lizarraga, M.A., de Jesus Rubio, J. and Mendoza-Mendoza, J. (2024). Algebraic active disturbance rejection to control a generalized uncertain second-order flat system, International Journal of Applied Mathematics and Computer Science 34(2): 185–198, DOI: 10.61822/amcs-2024-0013.
  3. Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B. and Diehl, M. (2019). CasADi: A software framework for nonlinear optimization and optimal control, Mathematical Programming Computation 11(1): 1–36.
  4. Becerra, V.M. (2010). Solving complex optimal control problems at no cost with PSOPT, 2010 IEEE International Symposium on Computer-Aided Control System Design, Yokohama, Japan, pp. 1391–1396.
  5. Betts, J.T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, SIAM, Philadelphia.
  6. Betts, J.T. and Erb, S.O. (2003). Optimal low thrust trajectories to the moon, SIAM Journal on Applied Dynamical Systems 2(2): 144–170.
  7. Biegler, L.T. and Zavala, V.M. (2009). Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization, Computers & Chemical Engineering 33(3): 575–582.
  8. Brockett, R.W. (2005). Robotic manipulators and the product of exponentials formula, in P.A. Fuhrmanni (Ed.), Mathematical Theory of Networks and Systems, Springer, Berlin, pp. 120–129.
  9. Budhiraja, R., Carpentier, J., Mastalli, C. and Mansard, N. (2018). Differential dynamic programming for multi-phase rigid contact dynamics, 2018 IEEE–RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, pp. 1–9.
  10. Cardona-Ortiz, D., Paz, A. and Arechavaleta, G. (2020). Exploiting sparsity in robot trajectory optimization with direct collocation and geometric algorithms, 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 469–475.
  11. Carlier, G. (2022). Classical and Modern Optimization, World Scientific, London.
  12. Fan, T., Schultz, J. and Murphey, T. (2018). Efficient computation of higher-order variational integrators in robotic simulation and trajectory optimization, in M. Morales et al. (Eds), Algorithmic Foundations of Robotics, Springer, Cham, pp. 689–706.
  13. Featherstone, R. (2014). Rigid Body Dynamics Algorithms, Springer, New York.
  14. Hereid, A. and Ames, A.D. (2017). FROST: Fast robot optimization and simulation toolkit, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, pp. 719–726.
  15. Houska, B., Ferreau, H.J. and Diehl, M. (2011). ACADO toolkit—An open-source framework for automatic control and dynamic optimization, Optimal Control Applications and Methods 32(3): 298–312.
  16. Howell, T.A., Jackson, B.E. and Manchester, Z. (2019). ALTRO: A fast solver for constrained trajectory optimization, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 7674–7679.
  17. Johnson, E.R. and Murphey, T.D. (2009). Scalable variational integrators for constrained mechanical systems in generalized coordinates, IEEE Transactions on Robotics 25(6): 1249–1261.
  18. Johnson, E., Schultz, J. and Murphey, T. (2015). Structured linearization of discrete mechanical systems for analysis and optimal control, IEEE Transactions on Automation Science and Engineering 12(1): 140–152.
  19. Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct collocation, SIAM Review 59(4): 849–904.
  20. Kelly, M.P. (2019). DirCol5i: Trajectory optimization for problems with high-order derivatives, Journal of Dynamic Systems, Measurement, and Control 141(3).
  21. Kobilarov, M.B. and Marsden, J.E. (2011). Discrete geometric optimal control on Lie groups, IEEE Transactions on Robotics 27(4): 641–655.
  22. Kobilarov, M. and Sukhatme, G. (2007). Optimal control using nonholonomic integrators, Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 1832–1837.
  23. Lee, J., Liu, C.K., Park, F.C. and Srinivasa, S.S. (2020). A linear-time variational integrator for multibody systems, in K. Goldberg et al. (Eds), Algorithmic Foundations of Robotics XII, Springer, Cham, pp. 352–367.
  24. Leineweber, D. B., Sch¨afer, A., Bock, H.G. and Schlöder, J. P. (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part II: Software aspects and applications, Computers & Chemical Engineering 27(2): 167–174.
  25. Leyendecker, S., Ober-Blobaum, S., Marsden, J.E. and Ortiz, M. (2010). Discrete mechanics and optimal control for constrained systems, Optimal Control Applications and Methods 31(6): 505–528.
  26. Liu, G., Wu, S., Zhu, L., Wang, J. and Lv, Q. (2022). Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction, International Journal of Applied Mathematics and Computer Science 32(1): 11–21, DOI: 10.34768/amcs-2022-0002.
  27. Manchester, Z., Doshi, N., Wood, R.J. and Kuindersma, S. (2019). Contact-implicit trajectory optimization using variational integrators, International Journal of Robotics Research 38(12-13): 1463–1476.
  28. Manns, P. and Mombaur, K. (2017). Towards discrete mechanics and optimal control for complex models, IFACPapersOnLine 50(1): 4812–4818.
  29. Marsden, J.E. and West, M. (2001). Discrete mechanics and variational integrators, Acta Numerica 10(10): 357–514.
  30. Mastalli, C., Budhiraja, R., Merkt, W., Saurel, G., Hammoud, B., Naveau, M., Carpentier, J., Righetti, L., Vijayakumar, S. and Mansard, N. (2020). Crocoddyl: An efficient and versatile framework for multi-contact optimal control, 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 2536–2542.
  31. Mayne, D. (1966). A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems, International Journal of Control 3(1): 85–95.
  32. Ober-Blöbaum, S., Junge, O. and Marsden, J.E. (2011). Discrete mechanics and optimal control: An analysis, ESAIM: Control, Optimisation and Calculus of Variations 17(2): 322–352.
  33. Orin, D.E., Goswami, A. and Lee, S.-H. (2013). Centroidal dynamics of a humanoid robot, Autonomous Robots 35(2-3): 161–176.
  34. Park, F.C., Kim, B., Jang, C. and Hong, J. (2018). Geometric algorithms for robot dynamics: A tutorial review, Applied Mechanics Reviews 70(1): 010803.
  35. Rao, A.V. (2009). A survey of numerical methods for optimal control, Advances in the Astronautical Sciences 135(1): 497–528.
  36. Rohmer, E., Singh, S.P.N. and Freese, M. (2013). V-REP: A versatile and scalable robot simulation framework, International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 1321–1326.
  37. Selig, J.M. (2004). Geometric Fundamentals of Robotics, Springer, New York.
  38. Sun, Z., Tian, Y., Li, H. and Wang, J. (2016). A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discrete mechanics and optimal control, Optimal Control Applications and Methods 37(6): 1139–1161.
  39. Zhang, W., Wang, D. and Inanc, T. (2018). A multiphase DMOC-based trajectory optimization method, Optimal Control Applications and Methods 39(1): 114–129.
DOI: https://doi.org/10.61822/amcs-2025-0007 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 83 - 96
Submitted on: Feb 21, 2024
|
Accepted on: Jul 8, 2024
|
Published on: Apr 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Carla Villanueva-Piñon, Gustavo Arechavaleta, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.