References
- Arkin, R.C. (1998). Behavior-Based Robotics, MIT Press, Cambridge.
- Åström, K.J. and H¨agglund, T. (1995). PID Controllers: Theory, Design, and Tuning, International Society of Measurement and Control, Research Triangle Park.
- Brooks, R. (1986). A robust layered control system for a mobile robot, IEEE Journal on Robotics and Automation 2(1): 14–23.
- Brauer, M. and Rouneau, A. (2025). Detection of Hamming markers for OpenCV in Phyton, https://github.com/DebVortex/python-ar-markers.
- Cybowski, W. (2025). Library for smart element hub cube lego robot inventor kit, https://github.com/wcyb/le_mind_controller.
- Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A. and Burgard, W. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge.
- Gnyś, P. (2017). Mereogeometry based approach for behavioral robotics, in L. Polkowski et al. (Eds), Rough Sets: International Joint Conference, Lecture Notes in Computer Science, Vol. 10314, Springer, Berlin/Heidelberg, pp. 70–80.
- Hwang, Y.K. and Ahuja, N. (1992). Gross motion planning—A survey, ACM Computing Surveys 24(3): 219–291.
- Kavraki, L.E., Svestka, P., Latombe, J.-C. and Overmars, M.H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation 12(4): 566–580.
- Latombe, J.-C. (1991). Robot Motion Planning, Kluwer Academic Publishers, Dordrecht.
- LaValle, S.M. (2006). Planning Algorithms, Cambridge University Press, Cambridge.
- OpenCV (2025). OpenCV computer vision library, https://opencv.org/.
- Ośmiałowski, P. (2011). Planning and Navigation for Mobile Autonomous Robots: Spatial Reasoning in Player/Stage System, Polish-Japanase Academy of Information Technology, Warsaw.
- Polkowski, L. and Ośmiałowski, P. (2008). A framework for multiagent mobile robotics: Spatial reasoning based on rough mereology in player/stage system, in C.-C. Chan et al. (Eds), Rough Sets and Current Trends in Computing: 6th International Conference, Springer, Berlin/Heidelberg, pp. 142–149.
- Polkowski, L. and Skowron, A. (1996). Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning 15(4): 333–365.
- Polkowski, L., Zmudzinski, L. and Artiemjew, P. (2018). Robot navigation and path planning by means of rough mereology, 2nd IEEE International Conference on Robotic Computing, Laguna Hills, USA, pp. 363–368.
- Raj, R. and Kos, A. (2022). A comprehensive study of mobile robot: History, developments, applications, and future research perspectives, Applied Sciences 12(14): 6951, DOI: 10.3390/app12146951.
- Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020.
- Szpakowska, A. (2025a). Rough mereology potential field 2D algorithm, https://github.com/aleksandraszpakowska/Recognition_opencv.
- Szpakowska, A. (2025b). Path planning using rough mereological potential field: Project demonstration, https://www.youtube.com/watch?v=hUHCbkKCDpY.
- Szpakowska, A., Artiemjew, P. and Cybowski, W. (2023). Navigational strategies for mobile robots using rough mereological potential fields and weighted distance to goal, in A. Campagner et al. (Eds), International Joint Conference on Rough Sets, Springer, Berlin/Heidelberg, pp. 549–564.
- Zmudzinski, L. and Artiemjew, P. (2017). Path planning based on potential fields from rough mereology, Rough Sets: International Joint Conference, IJCRS 2017, Olsztyn, Poland, pp. 158–168.