References
- Ackerman, M., Adolfsson, A. and Brownstein, N. (2016). An effective and efficient approach for clusterability evaluation, https://arxiv.org/abs/1602.06687.
- Ackerman, M., Ben-David, S. and Loker, D. (2010). Towards property-based classification of clustering paradigms, in J.D. Lafferty et al. (Eds), Advances in Neural Information Processing Systems 23, Curran Associates, Inc., San Francisco, pp. 10–18.
- Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding, in N. Bansal et al. (Eds), 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, SIAM, Philadelphia, pp. 1027–1035.
- Ben-David, S. (2015). Computational feasibility of clustering under clusterability assumptions, https://arxiv.org/abs/1501.00437.
- Ben-David, S. and Ackerman, M. (2009). Measures of clustering quality: A working set of axioms for clustering, in D. Koller et al. (Eds), Advances in Neural Information Processing Systems 21, Curran Associates, Inc., San Francisco, pp. 121–128.
- Cailliez, F. (1983). The analytical solution of the additive constant problem, Psychometrika 48(2): 305–308.
- Cohen-Addad, V., Kanade, V. and Mallmann-Trenn, F. (2018). Clustering redemption—Beyond the impossibility of Kleinberg’s axioms, in S. Bengio et al. (Eds), Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc., San Francisco.
- Ding, C. (2009). Dimension reduction techniques for clustering, in L. Liu and M. Oezsu (Eds), Encyclopedia of Database Systems, Springer, Boston, p. 846.
- Gao, Z. and Zhang, L. (2017). DPHKMS: An efficient hybrid clustering preserving differential privacy in spark, in L. Barolli et al. (Eds), Advances in Internetworking, Data & Web Technologies, Lecture Notes on Data Engineering and Communications Technologies, Vol. 6, Springer, Cham, pp. 367–377.
- Girolami, M. (2002). Mercer kernel-based clustering in feature space, IEEE Transactions on Neural Networks 13(3): 780–784.
- Hopcroft, J. and Kannan, R. (2012). Computer Science Theory for the Information Age, Chapter 8.13.2., p. 272ff, http://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/hopcroft-kannan-feb2012.pdf.
- Howland, P. and Park, H. (2008). Cluster preserving dimension reduction methods for document classification, in M. Berry and M. Castellanos (Eds), Survey of Text Mining: Clustering, Classification, and Retrieval. Second Edition, Springer, London, pp. 3–23.
- Keller, H., Möllering, H., Schneider, T. and Yalame, H. (2021). Privacy-preserving clustering, in S.-L. Gazdag et al. (Eds), Crypto Day Matters 32, Gesellschaft für Informatik e.V./FG KRYPTO, Bonn.
- Kleinberg, J. (2002). An impossibility theorem for clustering, Proceedings of the 15th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 446–453.
- Kłopotek, M.A. (2020). An aposteriorical clusterability criterion for k-means++ and simplicity of clustering, SN Computer Science 1(2): 80.
- Kłopotek, M.A. and Kłopotek, R.A. (2023). On the discrepancy between Kleinberg’s clustering axioms and k-means clustering algorithm behavior, Machine Learning 112(7): 2501–2553.
- Kłopotek, M. and Kłopotek, R. (2022). Richness fallacy, in G. Manco and Z.W. Raś (Eds), Foundations of Intelligent Systems, Lecture Notes in Computer Science, Vol. 13515, Springer, Cham, pp. 262–271.
- Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non-Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052.
- Larsen, K.G., Nelson, J., Nguyundefinedn, H.L. and Thorup, M. (2019). Heavy hitters via cluster-preserving clustering, Communications of the ACM 62(8): 95–100.
- Lingoes, J. (1971). Some boundary conditions for a monotone analysis of symmetric matrices, Psychometrika 36: 195–203.
- Lucińska, M. and Wierzchoń, S.T. (2018). Clustering based on eigenvectors of the adjacency matrix, International Journal of Applied Mathematics and Computer Science 28(4): 771–786, DOI: 10.2478/amcs-2018-0059.
- Madhulatha, T. (2012). An overview on clustering methods, IOSR Journal of Engineering 2(4): 719–725.
- Meilˇa, M. (2005). Comparing clusterings: An axiomatic view, Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, pp. 577–584.
- Ostrovsky, R., Rabani, Y., Schulman, L.J. and Swamy, C. (2013). The effectiveness of Lloyd-type methods for the k-means problem, Journal of the ACM 59(6): 28:1–28:22.
- Parameswaran, R. and Blough, D.M. (2005). A robust data-obfuscation approach for privacy preservation of clustered data, Proceedings of the Workshop on Privacy and Security Aspects of Data Mining, Houston, USA, p. 18–25.
- Ramírez, D.H. and Auñón, J.M. (2020). Privacy preserving k-means clustering: A secure multi-party computation approach, https://arxiv.org./abs/2009.10453.
- Roth, V., Laub, J., Kawanabe, M. and Buhmann, J. (2003). Optimal cluster preserving embedding of nonmetric proximity data, IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12): 1540–1551.
- Sabo, K. (2014). Center-based l1-clustering method, International Journal of Applied Mathematics and Computer Science 24(1): 151–163, DOI: 10.2478/amcs-2014-0012.
- Strazzeri, F. and Sánchez-García, R.J. (2021). Possibility results for graph clustering: A novel consistency axiom, https://arxiv.org/abs/1806.06142.
- Suchy, D. and Siminski, K. (2023). GrDBSCAN: A granular density-based clustering algorithm, International Journal of Applied Mathematics and Computer Science 33(2): 297–312, DOI: 10.34768/amcs-2023-0022.
- van Laarhoven, T. and Marchiori, E. (2014). Axioms for graph clustering quality functions, Journal of Machine Learning Research 15: 193–215.
- Zhang, J., Zhu, K., Pei, Y., Fletcher, G. and Pechenizkiy, M. (2019). Cluster-preserving sampling from fully-dynamic streaming graphs, Information Sciences 482: 279–300.
- Zhao, Y., Tarus, S.K., Yang, L.T., Sun, J., Ge, Y. and Wang, J. (2020). Privacy-preserving clustering for big data in cyber-physical-social systems: Survey and perspectives, Information Sciences 515: 132–155.