Ackerman, M., Adolfsson, A. and Brownstein, N. (2016). An effective and efficient approach for clusterability evaluation, https://arxiv.org/abs/1602.06687.
Ackerman, M., Ben-David, S. and Loker, D. (2010). Towards property-based classification of clustering paradigms, in J.D. Lafferty et al. (Eds), Advances in Neural Information Processing Systems 23, Curran Associates, Inc., San Francisco, pp. 10–18.
Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding, in N. Bansal et al. (Eds), 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, SIAM, Philadelphia, pp. 1027–1035.
Ben-David, S. and Ackerman, M. (2009). Measures of clustering quality: A working set of axioms for clustering, in D. Koller et al. (Eds), Advances in Neural Information Processing Systems 21, Curran Associates, Inc., San Francisco, pp. 121–128.
Cohen-Addad, V., Kanade, V. and Mallmann-Trenn, F. (2018). Clustering redemption—Beyond the impossibility of Kleinberg’s axioms, in S. Bengio et al. (Eds), Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc., San Francisco.
Ding, C. (2009). Dimension reduction techniques for clustering, in L. Liu and M. Oezsu (Eds), Encyclopedia of Database Systems, Springer, Boston, p. 846.
Gao, Z. and Zhang, L. (2017). DPHKMS: An efficient hybrid clustering preserving differential privacy in spark, in L. Barolli et al. (Eds), Advances in Internetworking, Data & Web Technologies, Lecture Notes on Data Engineering and Communications Technologies, Vol. 6, Springer, Cham, pp. 367–377.
Howland, P. and Park, H. (2008). Cluster preserving dimension reduction methods for document classification, in M. Berry and M. Castellanos (Eds), Survey of Text Mining: Clustering, Classification, and Retrieval. Second Edition, Springer, London, pp. 3–23.
Keller, H., Möllering, H., Schneider, T. and Yalame, H. (2021). Privacy-preserving clustering, in S.-L. Gazdag et al. (Eds), Crypto Day Matters 32, Gesellschaft für Informatik e.V./FG KRYPTO, Bonn.
Kleinberg, J. (2002). An impossibility theorem for clustering, Proceedings of the 15th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 446–453.
Kłopotek, M.A. and Kłopotek, R.A. (2023). On the discrepancy between Kleinberg’s clustering axioms and k-means clustering algorithm behavior, Machine Learning 112(7): 2501–2553.
Kłopotek, M. and Kłopotek, R. (2022). Richness fallacy, in G. Manco and Z.W. Raś (Eds), Foundations of Intelligent Systems, Lecture Notes in Computer Science, Vol. 13515, Springer, Cham, pp. 262–271.
Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non-Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052.
Larsen, K.G., Nelson, J., Nguyundefinedn, H.L. and Thorup, M. (2019). Heavy hitters via cluster-preserving clustering, Communications of the ACM 62(8): 95–100.
Lucińska, M. and Wierzchoń, S.T. (2018). Clustering based on eigenvectors of the adjacency matrix, International Journal of Applied Mathematics and Computer Science 28(4): 771–786, DOI: 10.2478/amcs-2018-0059.
Meilˇa, M. (2005). Comparing clusterings: An axiomatic view, Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, pp. 577–584.
Ostrovsky, R., Rabani, Y., Schulman, L.J. and Swamy, C. (2013). The effectiveness of Lloyd-type methods for the k-means problem, Journal of the ACM 59(6): 28:1–28:22.
Parameswaran, R. and Blough, D.M. (2005). A robust data-obfuscation approach for privacy preservation of clustered data, Proceedings of the Workshop on Privacy and Security Aspects of Data Mining, Houston, USA, p. 18–25.
Roth, V., Laub, J., Kawanabe, M. and Buhmann, J. (2003). Optimal cluster preserving embedding of nonmetric proximity data, IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12): 1540–1551.
Sabo, K. (2014). Center-based l1-clustering method, International Journal of Applied Mathematics and Computer Science 24(1): 151–163, DOI: 10.2478/amcs-2014-0012.
Suchy, D. and Siminski, K. (2023). GrDBSCAN: A granular density-based clustering algorithm, International Journal of Applied Mathematics and Computer Science 33(2): 297–312, DOI: 10.34768/amcs-2023-0022.
Zhang, J., Zhu, K., Pei, Y., Fletcher, G. and Pechenizkiy, M. (2019). Cluster-preserving sampling from fully-dynamic streaming graphs, Information Sciences 482: 279–300.
Zhao, Y., Tarus, S.K., Yang, L.T., Sun, J., Ge, Y. and Wang, J. (2020). Privacy-preserving clustering for big data in cyber-physical-social systems: Survey and perspectives, Information Sciences 515: 132–155.