Have a personal or library account? Click to login
Open Access
|Mar 2024

References

  1. Ackerman, M., Adolfsson, A. and Brownstein, N. (2016). An effective and efficient approach for clusterability evaluation, https://arxiv.org/abs/1602.06687.
  2. Ackerman, M., Ben-David, S. and Loker, D. (2010). Towards property-based classification of clustering paradigms, in J.D. Lafferty et al. (Eds), Advances in Neural Information Processing Systems 23, Curran Associates, Inc., San Francisco, pp. 10–18.
  3. Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding, in N. Bansal et al. (Eds), 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, SIAM, Philadelphia, pp. 1027–1035.
  4. Ben-David, S. (2015). Computational feasibility of clustering under clusterability assumptions, https://arxiv.org/abs/1501.00437.
  5. Ben-David, S. and Ackerman, M. (2009). Measures of clustering quality: A working set of axioms for clustering, in D. Koller et al. (Eds), Advances in Neural Information Processing Systems 21, Curran Associates, Inc., San Francisco, pp. 121–128.
  6. Cailliez, F. (1983). The analytical solution of the additive constant problem, Psychometrika 48(2): 305–308.
  7. Cohen-Addad, V., Kanade, V. and Mallmann-Trenn, F. (2018). Clustering redemption—Beyond the impossibility of Kleinberg’s axioms, in S. Bengio et al. (Eds), Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc., San Francisco.
  8. Ding, C. (2009). Dimension reduction techniques for clustering, in L. Liu and M. Oezsu (Eds), Encyclopedia of Database Systems, Springer, Boston, p. 846.
  9. Gao, Z. and Zhang, L. (2017). DPHKMS: An efficient hybrid clustering preserving differential privacy in spark, in L. Barolli et al. (Eds), Advances in Internetworking, Data & Web Technologies, Lecture Notes on Data Engineering and Communications Technologies, Vol. 6, Springer, Cham, pp. 367–377.
  10. Girolami, M. (2002). Mercer kernel-based clustering in feature space, IEEE Transactions on Neural Networks 13(3): 780–784.
  11. Hopcroft, J. and Kannan, R. (2012). Computer Science Theory for the Information Age, Chapter 8.13.2., p. 272ff, http://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/hopcroft-kannan-feb2012.pdf.
  12. Howland, P. and Park, H. (2008). Cluster preserving dimension reduction methods for document classification, in M. Berry and M. Castellanos (Eds), Survey of Text Mining: Clustering, Classification, and Retrieval. Second Edition, Springer, London, pp. 3–23.
  13. Keller, H., Möllering, H., Schneider, T. and Yalame, H. (2021). Privacy-preserving clustering, in S.-L. Gazdag et al. (Eds), Crypto Day Matters 32, Gesellschaft für Informatik e.V./FG KRYPTO, Bonn.
  14. Kleinberg, J. (2002). An impossibility theorem for clustering, Proceedings of the 15th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 446–453.
  15. Kłopotek, M.A. (2020). An aposteriorical clusterability criterion for k-means++ and simplicity of clustering, SN Computer Science 1(2): 80.
  16. Kłopotek, M.A. and Kłopotek, R.A. (2023). On the discrepancy between Kleinberg’s clustering axioms and k-means clustering algorithm behavior, Machine Learning 112(7): 2501–2553.
  17. Kłopotek, M. and Kłopotek, R. (2022). Richness fallacy, in G. Manco and Z.W. Raś (Eds), Foundations of Intelligent Systems, Lecture Notes in Computer Science, Vol. 13515, Springer, Cham, pp. 262–271.
  18. Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non-Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052.
  19. Larsen, K.G., Nelson, J., Nguyundefinedn, H.L. and Thorup, M. (2019). Heavy hitters via cluster-preserving clustering, Communications of the ACM 62(8): 95–100.
  20. Lingoes, J. (1971). Some boundary conditions for a monotone analysis of symmetric matrices, Psychometrika 36: 195–203.
  21. Lucińska, M. and Wierzchoń, S.T. (2018). Clustering based on eigenvectors of the adjacency matrix, International Journal of Applied Mathematics and Computer Science 28(4): 771–786, DOI: 10.2478/amcs-2018-0059.
  22. Madhulatha, T. (2012). An overview on clustering methods, IOSR Journal of Engineering 2(4): 719–725.
  23. Meilˇa, M. (2005). Comparing clusterings: An axiomatic view, Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, pp. 577–584.
  24. Ostrovsky, R., Rabani, Y., Schulman, L.J. and Swamy, C. (2013). The effectiveness of Lloyd-type methods for the k-means problem, Journal of the ACM 59(6): 28:1–28:22.
  25. Parameswaran, R. and Blough, D.M. (2005). A robust data-obfuscation approach for privacy preservation of clustered data, Proceedings of the Workshop on Privacy and Security Aspects of Data Mining, Houston, USA, p. 18–25.
  26. Ramírez, D.H. and Auñón, J.M. (2020). Privacy preserving k-means clustering: A secure multi-party computation approach, https://arxiv.org./abs/2009.10453.
  27. Roth, V., Laub, J., Kawanabe, M. and Buhmann, J. (2003). Optimal cluster preserving embedding of nonmetric proximity data, IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12): 1540–1551.
  28. Sabo, K. (2014). Center-based l1-clustering method, International Journal of Applied Mathematics and Computer Science 24(1): 151–163, DOI: 10.2478/amcs-2014-0012.
  29. Strazzeri, F. and Sánchez-García, R.J. (2021). Possibility results for graph clustering: A novel consistency axiom, https://arxiv.org/abs/1806.06142.
  30. Suchy, D. and Siminski, K. (2023). GrDBSCAN: A granular density-based clustering algorithm, International Journal of Applied Mathematics and Computer Science 33(2): 297–312, DOI: 10.34768/amcs-2023-0022.
  31. van Laarhoven, T. and Marchiori, E. (2014). Axioms for graph clustering quality functions, Journal of Machine Learning Research 15: 193–215.
  32. Zhang, J., Zhu, K., Pei, Y., Fletcher, G. and Pechenizkiy, M. (2019). Cluster-preserving sampling from fully-dynamic streaming graphs, Information Sciences 482: 279–300.
  33. Zhao, Y., Tarus, S.K., Yang, L.T., Sun, J., Ge, Y. and Wang, J. (2020). Privacy-preserving clustering for big data in cyber-physical-social systems: Survey and perspectives, Information Sciences 515: 132–155.
DOI: https://doi.org/10.61822/amcs-2024-0010 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 135 - 147
Submitted on: Aug 18, 2023
Accepted on: Nov 28, 2023
Published on: Mar 26, 2024
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Mieczysław A. Kłopotek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.