Have a personal or library account? Click to login

A Multi–Criteria Approach for Selecting an Explanation from the Set of Counterfactuals Produced by an Ensemble of Explainers

Open Access
|Mar 2024

Abstract

Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining more desired predictions. They can be generated by a variety of methods that optimize various, sometimes conflicting, quality measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and analysing conflicting solutions, in this paper we propose to use a multi-stage ensemble approach that will select a single counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one counterfactual from the Pareto front. The conducted experiments demonstrate that the proposed approach generates fully actionable counterfactuals with attractive compromise values of the quality measures considered.

DOI: https://doi.org/10.61822/amcs-2024-0009 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 119 - 133
Submitted on: Jul 6, 2023
Accepted on: Dec 5, 2023
Published on: Mar 26, 2024
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Ignacy Stepka, Mateusz Lango, Jerzy Stefanowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.