References
- Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D. and Rinzivillo, S. (2021). Benchmarking and survey of explanation methods for black box models, Data Mining and Knowledge Discovery 37(5): 1719 – 1778.
- Branke, J., Deb, K., Miettinen, K. and Slowiński, R. (2008). Multiobjective Optimization: Interactive and Evolutionary Approaches, Springer, Berlin/Heidelberg.
- Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M.-A. and Georgatzis, K. (2021). Fimap: Feature importance by minimal adversarial perturbation, Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11433–11441, (virtual).
- Dandl, S., Molnar, C., Binder, M. and Bischl, B. (2020). Multi-objective counterfactual explanations, in T. B¨ack et al. (Eds), Parallel Problem Solving from Nature, PPSN XVI, Springer, Cham, pp. 448–469.
- Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P., Shanmugam, K. and Das, P. (2018). Explanations based on the missing: Towards contrastive explanations with pertinent negatives, 32nd International Conference Neural Information Processing Systems, Montreal, Canada, pp. 590–601.
- Ehrgott, M. (2005). Multicriteria Optimization, Springer-Verlag.
- Ehrgott, M. and Tenfelde-Podehl, D. (2003). Computation of ideal and nadir values and implications for their use in MCDM methods, European Journal of Operational Research 151(1): 119–139.
- Falbogowski, M., Stefanowski, J., Trafas, Z. and Wojciechowski, A. (2022). The impact of using constraints on counterfactual explanations, Proceedings of the 3rd Polish Conference on Artificial Intelligence, PP-RAI 2022, Gdynia, Poland, pp. 81–84.
- Förster, M., Hühn, P., Klier, M. and Kluge, K. (2021). Capturing users’ reality: A novel approach to generate coherent counterfactual explanations, Proceedings of the 54th Hawaii International Conference on System Sciences, Maui, USA, pp. 1274–1284.
- Guidotti, R. (2022). Counterfactual explanations and how to find them: Literature review and benchmarking, Data Mining and Knowledge Discovery, DOI: 10.1007/s10618-022-00831-6.
- Guidotti, R. and Ruggieri, S. (2021). Ensemble of counterfactual explainers, 24th International Conference on Discovery Science, Halifax, Canada, pp. 358–368.
- Inbar, Y., Botti, S. and Hanko, K. (2011). Decision speed and choice regret: When haste feels like waste, Journal of Experimental Social Psychology 47(3): 533–540.
- Iyengar, S. and Lepper, M.R. (2000). When choice is demotivating: Can one desire too much of a good thing?, Journal of Personality and Social Psychology 79(6): 995–1006.
- Klaise, J., Looveren, A. V., Vacanti, G. and Coca, A. (2021). Alibi explain: Algorithms for explaining machine learning models, Journal of Machine Learning Research 22(1): 1–7.
- Kuncheva, L.I. (2004). Combining Pattern Classifiers: Methods and Algorithms, Wiley, Hoboken.
- Laugel, T., Lesot, M.-J., Marsala, C., Renard, X. and Detyniecki, M. (2018). Comparison-based inverse classification for interpretability in machine learning, in J. Medina et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Foundations, Springer, Cham, pp. 100–111.
- Mertes, S., Huber, T., Weitz, K., Heimerl, A. and André, E. (2022). GANterfactual—Counterfactual explanations for medical non-experts using generative adversarial learning, Frontiers in Artificial Intelligence 5.
- Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence 267: 1–38.
- Moore, J., Hammerla, N. and Watkins, C. (2019). Explaining deep learning models with constrained adversarial examples, in A.C. Nayak and A. Sharma (Eds), PRICAI 2019: Trends in Artificial Intelligence, Springer, Cham, pp. 43–56.
- Mothilal, R.K., Sharma, A. and Tan, C. (2020). Explaining machine learning classifiers through diverse counterfactual explanations, Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, pp. 607–617.
- Pawelczyk, M., Bielawski, S., van den Heuvel, J., Richter, T. and Kasneci, G. (2021). Carla: A Python library to benchmark algorithmic recourse and counterfactual explanation algorithms, arXiv 2108.00783.
- Pearl, J., Glymour, M. and Jewell, N. (2016). Causal Inference in Statistics: A Primer, Wiley, Hoboken.
- Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T. and Flach, P. (2020). FACE: Feasible and actionable counterfactual explanations, Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, Association for Computing Machinery, New York, USA, pp. 344–350.
- Rasouli, P. and Chieh Yu, I. (2022). CARE: Coherent actionable recourse based on sound counterfactual explanations, International Journal of Data Science and Analytics 17(1): 1–26.
- Skulimowski, A. (1990). Applicability of ideal points in multicriteria decision-making, Proceedings of the 9th International Conference on Multiple Criteria Decision-Making, Fairfax, USA, pp. 5–8.
- Spreitzer, N., Haned, H. and van der Linden, I. (2022). Evaluating the practicality of counterfactual explanations, Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022, New Orleans, USA.
- Stefanowski, J. (2023). Multi-criteria approaches to explaining black box machine learning models, Asian Conference on Intelligent Information and Database Systems ACIIDS 2023, Phuket, Thailand, pp. 195–208.
- Stepka, I., Lango, M. and Stefanowski, J. (2023). On usefulness of dominance relation for selecting counterfactuals from the ensemble of explainers, Proceedings of the 4th Polish Conference on Artificial Intelligence, PP-RAI 2023, Łódź, Poland, pp. 125–130.
- Steuer, R. (1986). Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, Hoboken.
- Tolomei, G., Silvestri, F., Haines, A. and Lalmas, M. (2017). Interpretable predictions of tree-based ensembles via actionable feature tweaking, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Hailfax, Canada.
- Ustun, B., Spangher, A. and Liu, Y. (2019). Actionable recourse in linear classification, Proceedings of the Conference on Fairness, Accountability, and Transparency, Atlanta, USA, pp. 10–19.
- Van Looveren, A. and Klaise, J. (2021). Interpretable counterfactual explanations guided by prototypes, in N. Oliver et al. (Eds), Machine Learning and Knowledge Discovery in Databases: Research Track, Springer, Cham, pp. 650–665.
- Verma, S., Boonsanong, V., Hoang, M., Hines, K.E., Dickerson, J.P. and Shah, C. (2020). Counterfactual explanations and algorithmic recourses for machine learning: A review, arXiv 2010.10596.
- Wachter, S., Mittelstadt, B. and Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the GDPR, Harvard Journal Law & Technology 31(2): 841–887.
- Wellawatte, G.P., Seshadri, A. and White, A.D. (2022). Model agnostic generation of counterfactual explanations for molecules, Chemical Science 13(13): 3697–3705.
- Wilson, D.R. and Martinez, T.R. (1997). Improved heterogeneous distance functions, Journal of Artificial Intelligence Research 6: 1–34.