References
- Acheampong, F. A., Nunoo-Mensah, H., & Chen, W. (2021). Transformer models for text-based emotion detection: a review of BERT-based approaches. Artificial Intelligence Review, 54(8), 5789–5829. https://doi.org/10.1007/s10462-021-09958-2
- Albert, C. (2017). The labor market impact of undocumented immigrants: Job creation vs. job competition. www.RePEc.org
- Almeida, P. (2019). Social movements: The structure of collective mobilization. University of California Press.
- Angelucci, D., De Sio, L., & Paparo, A. (2021). Beyond the migration crisis, deep values. where does hostility to immigrants come from? Partecipazione e Conflitto, 14(1), 373–395. https://doi.org/10.1285/i20356609v14i1p373
- Aubrey, A. (2020). The economic correlation between populism and immigration: Italy as a case study. SSRN 3597756.
- Babvey, P., Lipizzi, C., & Ramirez-Marquez, J. E. (2019). Dissecting twitter discussion threads with topic-aware network visualization. Proceedings - 6th Annual Conference on Computational Science and Computational Intelligence, CSCI 2019, 1359–1364. https://doi.org/10.1109/CSCI49370.2019.00254
- Barisione, M., Michailidou, A., & Airoldi, M. (2019). Understanding a digital movement of opinion: the case of #RefugeesWelcome. Information Communication and Society, 22(8), 1145–1164. https://doi.org/10.1080/1369118X.2017.1410204
- Beck, A. (2024). Italian and EU funding of the Libyan coast guard: How Italian external border immigration policies have created crimes against humanity, public ignorance, and legal accountability issues. Immigration and Human Rights Law Review, 5(1), 2.
- Berry, M., Garcia-Blanco, I., & Moore, K. (2016). Press coverage of the refugee and migrant crisis in the EU: A content analysis of five European countries. United Nations High Commissioner for Refugees
- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
- Bove, V., Böhmelt, T., & Nussio, E. (2021). Terrorism abroad and migration policies at home. Journal of European Public Policy, 28(2), 190–207. https://doi.org/10.1080/13501763.2020.1729227
- Breiger, R. L. (2004). The analysis of social networks. In A. Bryman, & M. A. Hardy (Eds.), Handbook of data analysis (pp. 505–526). Sage..
- Calderón, C. A., Blanco-Herrero, D., & Apolo, M. B. V. (2020). Rejection and hate speech in Twitter: Content analysis of tweets about migrants and refugees in Spanish. Revista Espanola de Investigaciones Sociologicas, 172, 21–39. https://doi.org/10.5477/cis/reis.172.21
- Chun, S. A., Singh, R., Morgan, P., Adam, N. R., & Atluri, V. (2020). Visual analytics for global migration policy discovery and NGO collaboration. In S.-J. Eom, & J. Lee (Eds.), dg.o ‘20: Proceedings of the 21st Annual International Conference on Digital Government Research (pp. 109–115). Association for Computing Machinery. https://doi.org/10.1145/3396956.3398261
- de Rosa, A. S., Bocci, E., Bonito, M., & Salvati, M. (2021). Twitter as social media arena for polarised social representations about the (im)migration: The controversial discourse in the Italian and international political frame. Migration Studies, 9(3), 1167–1194. https://doi.org/10.1093/migration/mnab001
- Debrael, M., d’Haenens, L., De Cock, R., & De Coninck, D. (2021). Media use, fear of terrorism, and attitudes towards immigrants and refugees: Young people and adults compared. International Communication Gazette, 83(2), 148–168. https://doi.org/10.1177/1748048519869476
- Del Val, E., Rebollo, M., & Botti, V. (2015). Does the type of event influence how user interactions evolve on twitter? PLoS One, 10(5). https://doi.org/10.1371/journal.pone.0124049
- Diouf, R., Sarr, E. N., Sall, O., Birregah, B., Bousso, M., & Mbaye, S. N. (2019, December). Web scraping: state-of-the-art and areas of application. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 6040-6042). IEEE.
- Dixon, T., Hawkins, S., Juan-Torres, M., & Kimaram, A. (2018). Attitudes towards National Identity, Immigration and Refugees in Italy. More in Common.
- Doan, L. N., Chong, S. K., Misra, S., Kwon, S. C., & Yi, S. S. (2021). Immigrant communities and COVID-19: Strengthening the public health response. American Journal of Public Health, 111, S224–S231. https://doi.org/10.2105/AJPH.2021.306433
- Ekman, P. (1999). Basic emotions. In Handbook of cognition and emotion (Vol. 98, pp. 45–60). John Wiley & Sons.
- Eurobarometer. (2022). Integration of immigrants in the European Union. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=migr_eipre&lang=en
- Eurostat. (2022). Population on 1 January by age group, sex and citizenship.
- Falekas, N., Karasavvoglou, A., Tsourgiannis, L., & Polychronidou, P. (2012). Immigrants and media in Greece: An empirical investigation for the period 2002-2008. European Research Studies, 15(1), 44–54.
- Farris, E. M., & Silber Mohamed, H. (2018). Picturing immigration: How the media criminalizes immigrants. Politics, Groups, and Identities, 6(4), 814–824. https://doi.org/10.1080/21565503.2018.1484375
- Franchino, F. (2009). Perspectives on European immigration policies. European Union Politics, 10(3), 403–420. https://doi.org/10.1177/1465116509337835
- Freire-Vidal, Y., & Graells-Garrido, E. (2019, May). Characterization of local attitudes toward immigration using social media. In: L. Liu, & R. White (Eds.), Companion proceedings of the 2019 World Wide Web Conference (pp. 783-790). https://doi.org/10.1145/3308560.3316455
- Gabai, S. (2019). The politics of representation of migrants in Italian media. In I. S. Shaw, & S. Selvarajah (Eds.), Reporting human rights, conflicts, and peacebuilding: critical and global perspectives (pp. 119–136). Springer Nature.
- Geddes, A., Hadj-Abdou, L., & Brumat, L. (2020). Migration and mobility in the European Union. Bloomsbury Publishing.
- Ghosh, G., Banerjee, S., & Yen, N. Y. (2016). State transition in communication under social network: An analysis using fuzzy logic and Density Based Clustering towards big data paradigm. Future Generation Computer Systems, 65, 207–220. https://doi.org/10.1016/j.future.2016.02.017
- Gintova, M. (2019). Understanding government social media users: An analysis of interactions on Immigration, Refugees and Citizenship Canada Twitter and Facebook. Government Information Quarterly, 36(4). https://doi.org/10.1016/j.giq.2019.06.005
- Gonzale Vega, J. A. (2019). In the name of solidarity and human values: Rescue operations at high seas by NGOs vs. the International Legal Orde. Spanish Yearbook of International Law, 23, 248–262. https://doi.org/10.17103/sybil.23.15
- Greco, F., & Polli, A. (2020). The political debate on immigration in the election campaigns in Europe. In A. Przegalinska, F. Grippa, & P. A. Gloor (Eds.), Digital transformation of collaboration: Proceedings of the 9th International COINs Conference (pp. 111–123). Springer International Publishing.
- Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014, January). Word cloud explorer: Text analytics based on word clouds. In: R. H. Sprague Jr. (Ed.), 2014 47th Hawaii International Conference on System Sciences (pp. 1833–1842). IEEE. https://doi.org/10.1109/HICSS.2014.231
- Hove, E. (2022). Twitter and the politics of representation in South Africa and Zimbabwe’s xenophobic narratives during the covid-19 pandemic. Acta Academica, 54(2), 179–197. https://doi.org/10.18820/24150479/AA54I2/10
- Hữu, A. N. (2022). Social media and the online political engagement of immigrants: the case of the vietnamese diaspora in Poland. Central and Eastern European Migration Review, 11(1), 85–107. https://doi.org/10.54667/ceemr.2022.01
- Indelicato, A., & Martín, J. C. (2024). The effects of three facets of national identity and other socioeconomic traits on attitudes towards immigrants. Journal of International Migration and Integration 25, 645–672. https://doi.org/10.1007/s12134-023-01100-1
- Integrazionemigranti. (2024, January 8). Nel 2023 sbarcati in Italia 158 mila migranti, +50%. https://integrazionemigranti.gov.it/it-it/Ricerca-news/Dettaglio-news/id/3595/Nel-2023-sbarcati-in-Italia-158-mila-migranti-50
- Jamil, M. L., Pais, S., Cordeiro, J., & Dias, G. (2022). Detection of extreme sentiments on social networks with BERT. Social Network Analysis and Mining, 12(1), 55. https://doi.org/10.1007/s13278-022-00882-z
- Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211. https://doi.org/10.1007/s11042-018-6894-4
- Kapidzic, S., Neuberger, C., Stieglitz, S., & Mirbabaie, M. (2019). Interaction and Influence on Twitter: Comparing the discourse relationships between user types on five topics. Digital Journalism, 7(2), 251–272. https://doi.org/10.1080/21670811.2018.1522962
- King, D., Ramirez-Cano, D., Greaves, F., Vlaev, I., Beales, S., & Darzi, A. (2013). Twitter and the health reforms in the English National Health Service. Health Policy, 110(2–3), 291–297. https://doi.org/10.1016/j.healthpol.2013.02.005
- Kushner, T. (2016). Lampedusa and the migrant crisis: ethics, representation and history. Mobile Culture Studies, 2, 199–231. https://doi.org/10.25364/08.2:2016.1.6)
- Liccardi, I., Ounnas, A., Pau, R., Massey, E., Kinnunen, P., Lewthwaite, S., Midy, M.-A., & Sarkar, C. (2007). The role of social networks in students’ learning experiences. ACM Sigcse Bulletin, 39(4).
- Lockett, A. (2021). What is Black Twitter? A rhetorical criticism of race, dis/information, and social media. In A. L. Lockett, I. D. Ruiz, J. C. Sanchez, & C. Carter (Eds.), Race, rhetoric, and research methods (pp. 165–213). University Press of Colorado.
- Longo, N. V., & Shaffer, T. J. (2019). Creating space for democracy: a primer on dialogue and deliberation in higher education. Stylus Publishing.
- Lori, N., & Schilde, K. (2021). A political economy of global security approach to migration and border control. Journal of Global Security Studies, 6(1), ogaa011. https://doi.org/10.1093/jogss/ogaa011
- McCann, K., Sienkiewicz, M., & Zard, M. (2023). The role of media narratives in shaping public opinion toward refugees a comparative analysis. International Organization for Migration.
- Negara, E. S., Triadi, D., & Andryani, R. (2019, October). Topic modelling twitter data with latent dirichlet allocation method. In 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) (pp. 386-390). IEEE. https://doi.org/10.1109/ICECOS47637.2019.8984523
- O’Connor, D. (2013). The apomediated world: Regulating research when social media has changed research. Journal of Law, Medicine and Ethics, 41(2), 470–483. https://doi.org/10.1111/jlme.12056
- Öner, S., & Cirino, M. (2023). The perceptions of political and civil society actors on securitisation of sea rescue NGOs in the Mediterranean: The case of Italy. Journal of North African Studies, 28(2), 392–418. https://doi.org/10.1080/13629387.2021.1989586
- Özçift, A., Akarsu, K., Yumuk, F., & Söylemez, C. (2021). Advancing natural language processing (NLP) applications of morphologically rich languages with bidirectional encoder representations from transformers (BERT): An empirical case study for Turkish. Automatika, 62(2), 226–238. https://doi.org/10.1080/00051144.2021.1922150
- Pope Francis. (2020). Encuclical Letter Fratelli Tutti. Qomariyah, S., Iriawan, N., & Fithriasari, K. (2019). Topic modeling Twitter data using Latent Dirichlet Allocation and Latent Semantic Analysis. AIP Conference Proceedings, 2194. https://doi.org/10.1063/1.5139825
- Román, E., & Sagás, E. (2020). Rhetoric and the creation of hysteria. Florida International University Legal Studies Research Paper, 20–21. https://dx.doi.org/10.2139/ssrn.3699002
- Rosales, W. E., Enriquez, L. E., & Nájera, J. R. (2021). Politically excluded, undocu- engaged: The perceived effect of hostile immigration policies on undocumented student political engagement. Journal of Latinos and Education, 20(3), 260–275. https://doi.org/10.1080/15348431.2021.1949991
- Schneider, G., & Reveilhac, M. (2023). Assessing how attitudes to migration in social media complement public attitudes found in opinion surveys. Swiss Papers in English Language and Literature, 41(41), 119–153. https://doi.org/10.33675/spell/2022/41/10
- Shrivatava, A., Mayor, S., & Pant, B. (2014). Opinion mining of real time twitter tweets. International Journal of Computer Applications, 100(19).
- Smith, A. (2017). Uncertainty, alert and distress: The precarious position of NGO search and rescue operations in the Central Mediterranean. Paix et Securite Internationales, 5, 29–70.
- Snider, K. L. G., Hefetz, A., & Canetti, D. (2023). Terrorized by immigration? Threat perceptions and policy preferences. Terrorism and Political Violence, 36 552–566. https://doi.org/10.1080/09546553.2023.2180287
- Stocchiero, A. (2017). The public debate on the Italian isolation in the European Union migration crisis. In M. Barlai, B. Fahnrich, C. Griessler, & M. Rhomberg (Eds.), The migrant crisis: European perspectives and national discourses (pp. 169–191). Lit Verlag,
- Sutkutė, R. (2023). Public discourse on refugees in social media: A case study of the Netherlands. Discourse and Communication, 18(1), 72–97. https://doi.org/10.1177/17504813231188499
- Syed, R., & Silva, L. (2023). Social movement sustainability on social media: An analysis of the women’s march movement on twitter. Journal of the Association for Information Systems, 24(1), 249–293. https://doi.org/10.17705/1jais.00776
- Takikawa, H., & Nagayoshi, K. (2017, December). Political polarization in social media: Analysis of the “Twitter political field” in Japan. In 2017 IEEE international conference on big data (big data) (pp. 3143–3150). IEEE.
- Tomaselli, V., & Sampugnaro, R. (2022). Attitudes towards no-European Immigrants in EU: The role of legacy media and new media. Migration Letters, 19(6), 855–868. https://doi.org/10.33182/ML.V19I5.2111
- Valenzuela-Vergara, E. M. (2019). Media representations of immigration in the Chilean press: to A different narrative of immigration? Journal of Communication Inquiry, 43(2), 129–151. https://doi.org/10.1177/0196859918799099
- Vincenzo, M. (2019). Media use, political efficacy and anti-immigrant feelings in host countries. Contemporary Italian Politics, 11(4), 415–428. https://doi.org/10.1080/23248823.2019.1681738
- Wadud, M. A. H., Mridha, M. F., Shin, J., Nur, K., & Saha, A. K. (2023). Deep-bert: Transfer learning for classifying multilingual offensive texts on social media. Computer Systems Science and Engineering, 44(2), 1775–1791. https://doi.org/10.32604/csse.2023.027841
- Walsh, J. P. (2023). Digital nativism: Twitter, migration discourse and the 2019 election. New Media and Society, 25(10), 2618–2643. https://doi.org/10.1177/14614448211032980
- Welch, J. W. (1999). The Good Samaritan: A type and shadow of the plan of salvation. BYU Studies Quarterly, 38(2), 51–15.
- Wu, D., & Martín, J. C. (2022). Research on passengers’ preference for highspeed railways (HSRs) and high‐speed trains (HSTs). Sustainability, 14(3), 1473. https://doi.org/10.3390/su14031473
- Żakowska, M., & Domalewska, D. (2019). Factors determining Polish parliamentarians’ tweets on migration: A case study of Poland. Politologicky Casopis, 2019(3), 200–216. https://doi.org/10.5817/PC2019-3-200
- Zerback, T., Reinemann, C., Van Aelst, P., & Masini, A. (2020). Was Lampedusa a key event for immigration news? An analysis of the effects of the Lampedusa disaster on immigration coverage in Germany, Belgium, and Italy. Journalism Studies, 21(6), 748–765. https://doi.org/10.1080/1461670X.2020.1722730
