Have a personal or library account? Click to login
The impact of length, rotation, and repetition in Arabic words: Event-related potential evidence Cover

The impact of length, rotation, and repetition in Arabic words: Event-related potential evidence

Open Access
|Dec 2024

References

  1. Abdelhadi, S.; Ibrahim, R. &Eviatar, Z. (2011) Perceptual load in the reading of Arabic: Effects of orthographic visual complexity on detection, Writing Systems Research, 3(2), 117–127, https://doi:10.1093/wsr/wsr014
  2. Abdelrheem, TN. (2021). Concurrent effects of attention and colors on the cerebral hemisphere processing speed of Arabic words. European Journal of Education and Psychology, 14(1), 1–15. https://doi:10.32457/ejep.v14i1.1542
  3. Alqahtani, G., & Alothaim, A. (2022). Emotion analysis of Arabic tweets: Language models and available resources. Frontiers in Artificial Intelligence, 5, 843038. https://doi.org/10.3389/frai.2022.843038
  4. Barnhart, A. S. & Goldinger, S. D. (2013). Rotation reveals the importance of configural cues in handwritten word perception. Psychonomic Bulletin & Review, 20, 1319–1326. https://doi.org/10.3758/s13423-013-0435-y
  5. Bentin, S., & Ibrahim, R. (1996). New evidence for phonological processing during visual word recognition: The case of Arabic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(2), 309. https://doi.org/10.1037/0278-7393.22.2.309
  6. Benyhe, A., & Csibri, P. (2021). Can rotated words be processed automatically? Evidence from rotated repetition priming. Memory & Cognition, 49, 1163–1171. https://doi.org/10.3758/s13421-021-01147-4
  7. Berg, P. & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90, 229–241. https://doi.org/10.1016/0013-4694(94)90094-9
  8. Boudelaa, S. (2014). Is the Arabic mental lexicon morpheme-based or stem-based? Implications for spoken and written word recognition. In E. Saiegh--Haddad & R. Joshi (Eds.), Handbook of Arabic literacy: Insights and perspectives (pp. 31–54). Springer Netherlands.
  9. Björnström, L. E., Hills, C., Hanif, H., & Barton, J. J. (2014). Visual word expertise: A study of inversion and the word-length effect, with perceptual transforms. Perception, 43(5), 438–450. https://doi.org/10.1068/p7698
  10. Brice, A. E., Salnaitis, C., & MacPherson, M. K. (2023). Neural activation in bilinguals and monolinguals using a word identification task. Languages, 8(3), 216. https://doi.org/10.3390/languages8030216
  11. Carlos, B. J., Hirshorn, E. A., Durisko, C., Fiez, J. A., & Coutanche, M. N. (2019). Word inversion sensitivity as a marker of the visual word form area lateralization: An application of a novel multivariate measure of laterality. Neuro-image, 191, 493–502. https://doi.org/10.1016/j.neuroimage.2019.02.044
  12. Choudhury, A., & Sarma, K. K. (2023). Trajectory-based recognition of in-air handwritten Assamese words using a hybrid classifier network. International Journal on Document Analysis and Recognition, 26, 375–400. https://doi.org/10.1007/s10032-022-00426-3
  13. Davis, C. P., Libben, G., & Segalowitz, S. J. (2019). Compounding matters: Event-related potential evidence for early semantic access to compound words. Cognition, 184, 44–52. https://doi.org/10.1016/j.cognition.2018.12.006
  14. Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9(7), 335-341. https://doi.org/10.1016/j.tics.2005.05.004
  15. Dołżycka, J. D., Nikadon, J., Weis, P. P., Herbert, C., & Formanowicz, M. (2023). Linguistic and emotional responses evoked by pseudoword presentation: An EEG and behavioral study. Brain and Cognition, 168, 105973. https://doi.org/10.1016/j.bandc.2023.105973
  16. Ellis, A. W., Flude, B. M., & Young, A. W. (1987). Neglect dyslexia and the early visual processing of letters in words and nonwords. Cognitive Neuropsychology, 4, 439–464. https://doi.org/10.1080/02643298708252047
  17. Fernández-López, M., Gómez, P., & Perea, M. (2023). Letter rotations: Through the magnifying glass and what evidence found there. Language, Cognition and Neuroscience, 38(2), 127–138. https://doi.org/10.1080/23273798.2022.2093390
  18. Fernández-López, M., Perea, M., & Vergara-Martínez, M. (2022). On the time course of the tolerance of letter detectors to rotations: A masked priming ERP investigation. Neuropsychologia, 172, 108259. https://doi.org/10.1016/j.neuropsychologia.2022.108259
  19. Flick, G. (2023). From letters to concepts: Examining the brain systems that support word recognition and composition in reading [Doctoral dissertation, New York University]. https://www.proquest.com/openview/f646a07b5293992715ea963d3d2a05bd/1?pq-origsite=gscholar&cbl=18750&diss=yest
  20. Gregg, J., Inhoff, A. W., & Li, X. (2023). Lexical competition influences correct and incorrect visual word recognition. Quarterly Journal of Experimental Psychology, 76(5), 1011–1025. https://doi.org/10.1177/17470218221102878
  21. Habash, N. Y. (2022). Introduction to Arabic natural language processing. Springer Nature.
  22. Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301–307. https://doi.org/10.1016/S0896-6273(03)00838-9.
  23. Hershman, R., Share, D. L., Weiss, E. M., Henik, A., & Shechter, A. (2024). Insights from eye blinks into the cognitive processes involved in visual word recognition. Journal of Cognition, 7(1), 1–9. https://doi.org/10.5334/joc.343
  24. Hendrickson, K., Apfelbaum, K., Goodwin, C., Blomquist, C., Klein, K., & McMurray, B. (2022). The profile of real-time competition in spoken and written word recognition: More similar than different. Quarterly Journal of Experimental Psychology, 75(9), 1653–1673. https://doi.org/10.1177/17470218211056
  25. Holcomb, P. J., & Grainger, J. (2007). Exploring the temporal dynamics of visual word recognition in the masked Repetition priming paradigm using event--related potentials. Brain Research, 1180, 39–58. https://doi.org/10.1016/j.brainres.2007.06.110
  26. Ibrahim R, Eviatar Z, Aharon-Peretz J (2002) The characteristics of Arabic orthography slow its processing. Neuropsychology, 16, 322–326. https://doi.org/10.1037/0894-4105.16.3.322
  27. Kaltsa, M., & Papadopoulou, D. (2024). The processing of lexical ambiguity: Evidence from child and adult Greek. Journal of Psycholinguistic Research, 53(1), 1–20. https://doi.org/10.1007/s10936-024-10063-y
  28. Kim, A. E., & Straková, J. (2012). Concurrent effects of lexical status and letter--rotation during early-stage visual word recognition: Evidence from ERPs. Brain Research, 1468, 52–62. https://doi.org/10.1016/j.brainres.2012.04.008
  29. Lien, M. C., Allen, P. A., & Ruthruff, E. (2021). Multiple routes to word recognition: Evidence from event-related potentials. Psychological Research, 85, 151-180. https://doi.org/10.1007/s00426-019-01256-5
  30. Li, C. H., Wang, M. Y., & Kuo, B. C. (2022). The effects of stimulus inversion on the neural representations of Chinese characters and face recognition. Neuropsychologia, 164, 108090. https://doi.org/10.1016/j.neuropsychologia.2021.108090.
  31. Malakar, S., Sahoo, S., Chakraborty, A., Sarkar, R., & Nasipuri, M. (2022). Handwritten Arabic and Roman word recognition using holistic approach. The Visual Computer, 39, 2909–2932. https://doi.org/10.1007/s00371-022-02500-7
  32. Martin, C. D., Costa, A., Dering, B., Hoshino, N., Wu, Y. J., & Thierry, G. (2012). Effects of the speed of word processing on semantic access: The case of bilingualism. Brain and Language, 120, 61–65. https://doi.org/10.1016/j.bandl.2011.10.003
  33. Maurer, U., Rossion, B., & McCandliss, B. D. (2008). Category specificity in early perception: face and word n170 responses differ in both lateralization and habituation properties. Frontiers in Human Neuroscience, 2, 406. https://doi.org/10.3389/neuro.09.018.2008
  34. Mohamed, T. N. (2024). From faces to fingers: Examining attentional capture of faces and body parts using colour singleton paradigm. Revue canadienne de psychologie expérimentale. Advance online publication. https://doi.org/10.1037/cep0000358
  35. Mohamed, T. N., Alsafar, H., & Felemban, M. (2024). Exploring the human response to anger: uncovering insights through infrared thermography and experimental psychology. Acta Neuropsychologica, 22(3), 331–50. https://doi.org/10.5604/01.3001.0054.6769
  36. Mohamed, T N., (2018a). The influence of perceptual load on the orthographic complexity of Arabic words processing: ERP evidence. Neuropsychological Trends, 24(24), 49–62. http://dx.doi.org/10.7358/neur-2018-024-moha
  37. Mohamed, T. N., (2018b). Combined effects of selective attention and repetition on event-related potentials of Arabic words processing. Neuropsychological Trends, 23, 83-95. http://dx.doi.org/10.7358/neur-2018-023-tari
  38. Mohamed, T. N. (2017a). Dissociating attentional effects on the N170 event-related potential of faces and body parts. Anuario de Psicología, 47(2), 107–114. https://doi.org/10.1016/j.anpsic.2017.10.004
  39. Mohamed, T. N. (2017b). Perceptual load manipulation does not reveal sensitivity on the N170 ERP component of manipulated faces and bodies. Acta Neuropsychologica, 15, 325–340. https://doi.org/10.5604/01.3001.0010.6096
  40. New, B., ferrand, L., pallier, C., Brysbaert, M. (2006). Reexamining the word length effect in visual word recognition: new evidence from the English Lexicon Project. Psychonomic Bulletin & Review, 13, 45–52. https://doi.org/10.3758/BF03193811
  41. Nischal, R. P., & Behrmann, M. (2023). Developmental emergence of holistic processing in word recognition. Developmental Science, 26(4), e13372. https://doi.org/10.1111/desc.13372
  42. Perea, M., Vergara-Martínez, M., Marcet, A., Mallouh, R. A., & Fernández--López, M. (2020). When does rotation disrupt letter encoding? Testing the resilience of letter detectors in the initial moments of processing. Memory & Cognition, 48, 704–709. https://doi.org/10.3758/s13421-020-01013-9
  43. Proverbio, A. M., Wiedemann, F., Adorni, R., Rossi, V., Del Zotto, M., & Zani, A. (2007). Dissociating object familiarity from linguistic properties in mirror word reading. Behavioral and Brain Functions, 3, 43. https://doi.org/10.1186/1744-9081-3-43
  44. Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 20, 1609–1624. https://doi.org/10.1016/j.neuro-image.2003.07.010
  45. Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a timeline of word recognition: Evidence from eye movements and event-related potentials. Neuroreport, 9(10), 2195–2200.
  46. Strijkers, K., Costa, A., & Thierry, G. (2010). Tracking lexical access in speech production: Electrophysiological correlates of word frequency and cognate effects. Cerebral Cortex, 20(4), 912–928. https://doi.org/10.1093/cercor/bhp153
  47. Syahid, A. H., & Nurdianto, T. (2022). Brain lateralization and strategies to improve metalinguistic ability in Arabic language acquisition. ALSUNIYAT: Journal Penelitian Bahasa, Sastra, dan Budaya Arab, 5(2), 185–203. https://doi.org/10.17509/alsuniyat.v5i2.51043
  48. Tsang, Y. K., & Zou, Y. (2022). An ERP mega study of Chinese word recognition. Psychophysiology, 59(11), e14111. https://doi.org/10.1111/psyp.14111
  49. Tsuboi, N., Francis, W. S., & Jameson, J. T. (2021). How word comprehension exposures facilitate later spoken production: Implications for lexical processing and repetition priming. Memory, 29(1), 39–58. https://doi.org/10.1080/09658211.2020.1845740
  50. Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin & Review, 8(2), 221–243. https://doi.org/10.3758/BF03196158
  51. Whitney, C. (2008). Supporting the serial in the SERIOL model. Language and Cognitive Processes, 23(6), 824–865. https://doi.org/10.1080/01690960701828202
  52. Van Hell, J. G. (2022). Ontogenesis model of L2 lexical representation: Cross-language links to account for bilingual lexical processing. Bilingualism: Language and Cognition, 25(2), 232–233. https://doi.org/10.1017/S1366728921000663
  53. Van Soeren, D. P. (2023). The role of word recognition factors and lexical stress in the distribution of consonants in Spanish, English and Dutch. Journal of Linguistics, 59(1), 149–177. https://doi:10.1017/S0022226722000081
  54. Ventura, P., & Cruz, F. (2024). Domain specificity vs. domain generality: The case of faces and words. Vision, 8(1), 1. https://doi.org/10.3390/vision8010001
  55. Yassin, R., Share, D. L., & Shalhoub-Awwad, Y. (2020). Learning to spell in Arabic: The impact of script-specific visual-orthographic features. Frontiers in Psychology, 11, 2059. https://doi.org/10.3389/fpsyg.2020.02059
  56. Yu, L., Zhang, Q., Ke, M., Han, Y., & Kinoshita, S. (2023). Some neighbors are more interfering: Asymmetric priming by stroke neighbors in Chinese character recognition. Psychonomic Bulletin & Review, 30(3), 1065–1073. https://doi.org/10.3758/s13423-022-02207-9
  57. Yum, Y. N., & Law, S. P. (2021). N170 reflects visual familiarity and automatic sub lexical phonological access in L2 written word processing. Bilingualism: Language and Cognition, 24(4), 670–680. https://doi.org/10.1017/S1366728920000759
DOI: https://doi.org/10.58734/plc-2024-0022 | Journal eISSN: 2083-8506 | Journal ISSN: 1234-2238
Language: English
Page range: 607 - 627
Published on: Dec 23, 2024
Published by: Faculty of Psychology, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Tarik N. Mohamed, published by Faculty of Psychology, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.