Have a personal or library account? Click to login
Biomass measurement of living Lumbriculus variegatus with impedance spectroscopy Cover

Biomass measurement of living Lumbriculus variegatus with impedance spectroscopy

Open Access
|Dec 2014

References

  1. Hermann L. Über eine Wirkung galvanischer Ströme auf Muskeln und Nerven. Pflügers Arch Eur J Physiol. 1872;223– 275.
  2. Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41(11):2231–2249. http://dx.doi.org/10.1088/0031-9155/41/11/00110.1088/0031-9155/41/11/001
  3. Fricke H, Curtis H. Electric impedance of suspensions of yeast cells. Nature. 1934;102–103. http://dx.doi.org/10.1038/134102b0
  4. Markx GH, Davey CL. The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb Technol. 1999;25(3-5):161–171. http://dx.doi.org/10.1016/S0141-0229(99)00008-310.1016/S0141-0229(99)00008-3
  5. Fehrenbach R, Comberbach M, Pêtre JO. On-line biomass monitoring by capacitance measurement. J Biotechnol. 1992 May;23(3):303–314. http://dx.doi.org/10.1016/0168-1656(92)90077-M10.1016/0168-1656(92)90077-M1368248
  6. Harris C, Kell D. The estimation of microbial biomass. Biosensors. 1985;1:17–84. http://dx.doi.org/10.1016/0265-928X(85)85005-710.1016/0265-928X(85)85005-73916271
  7. Knabben I, Regestein L, Grumbach C, Steinbusch S, Kunze G, Büchs J. Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal. J Biotechnol. 2010 Aug 20; 9(1-2):60–66. http://dx.doi.org/10.1016/j.jbiotec.2010.06.0072059957510.1016/j.jbiotec.2010.06.007
  8. Yardley JE, Kell DB, Barrett J, Davey CL. On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnology & genetic engineering reviews. 2000; 3–35. http://dx.doi.org/10.1080/02648725.2000.1064798611255671
  9. Carvell J, Turner K. New applications and methods utilizing radio-frequency impedance measurements for improving yeast management. Tech quarterly-Master Brewers Association of the Americas. 2003;40(1):30–38.
  10. Yang L, Ruan C, Li Y. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens Bioelectron. 2003;19(5):495–502. http://dx.doi.org/10.1016/S0956-5663(03)00229-X10.1016/S0956-5663(03)00229-X14623474
  11. Kim T, Kang J, Lee J-H, Yoon J. Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res. 2011;45(15):4615–4622. http://dx.doi.org/10.1016/j.watres.2011.06.01010.1016/j.watres.2011.06.01021762943
  12. Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron. 2013;49:348–359. http://dx.doi.org/10.1016/j.bios.2013.04.01710.1016/j.bios.2013.04.01723796534
  13. Nelson SO. Dielectric spectroscopy in agriculture. J Non Cryst Solids. 2005;351(33-36):2940–2944. http://dx.doi.org/10.1016/j.jnoncrysol.2005.04.08110.1016/j.jnoncrysol.2005.04.081
  14. Schwan HP. Electrical properties of tissues and cell suspensions: mechanisms and models. Eng Med Biol Soc. 1994 Eng Adv New Oppor Biomed Eng Proc 16th Annu Int Conf IEEE. 1994;A70–A71.
  15. Wagner KW. Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Electrical Engineering (Archiv für Elektrotechnik), 1914, 2.9: 371-387.
  16. Kell DB, Markx GH, Davey CL, Todd RW. Real-time monitoring of cellular biomass: Methods and applications. TrAC Trends Anal Chem. 1990;9(6):190–194. http://dx.doi.org/10.1016/0165-9936(90)87042-K10.1016/0165-9936(90)87042-K
  17. Patel P, Markx GH. Dielectric measurement of cell death. Enzyme Microb Technol. 2008;43(7):463–470. http://dx.doi.org/10.1016/j.enzmictec.2008.09.00510.1016/j.enzmictec.2008.09.005
  18. Bondarenko AS, Ragoisha GA. In Progress in Chemometrics Research, Pomerantsev A. L., Ed.; Nova Science Publishers: New York, 2005, pp. 89–102 (the program is available online at http://www.abc.chemistry.bsu.by/vi/analyser/).
  19. Powell M. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J. 1964;7(2):155–162. http://dx.doi.org/10.1093/comjnl/7.2.15510.1093/comjnl/7.2.155
  20. Brug G, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem. 1984;176:275–295. http://dx.doi.org/10.1016/S0022-0728(84)80324-110.1016/S0022-0728(84)80324-1
  21. Barreiros dos Santos, M., Agusil, J. P., Prieto-Simón, B., Sporer, C., Teixeira, V., and Samitier, J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy Biosensors and Bioelectronics, 2013, 45, 174-180. http://dx.doi.org/10.1016/j.bios.2013.01.009
  22. Elissen HJH, Mulder WJ, Hendrickx TLG, Elbersen HW, Beelen B, Temmink H. Aquatic worms grown on biosolids: biomass composition and potential applications. Bioresour Technol. 2010; 101(2):804–811. http://dx.doi.org/10.1016/j.biortech.2009.08.0601974877710.1016/j.biortech.2009.08.060
  23. Hartmann NB, Legros S, Von der Kammer F, Hofmann T, Baun A. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol. 2012;118-119:1–8. http://dx.doi.org/10.1016/j.aquatox.2012.03.00810.1016/j.aquatox.2012.03.00822494961
  24. Leppänen M, Kukkonen J. Fate of sediment-associated pyrene and benzo pyrene in the freshwater oligochaete Lumbriculus variegatus (Müller). Aquat Toxicol. 2000;49:199–212. http://dx.doi.org/10.1016/S0166-445X(99)00078-810.1016/S0166-445X(99)00078-8
  25. Leynen M, Berckt T Van Den, Aerts J. The use of Tubificidae in a biological early warning system. Environ Pollut. 1999;105(1):151–154. http://dx.doi.org/10.1016/S0269-7491(98)00144-410.1016/S0269-7491(98)00144-4
  26. Mäenpää K, Kukkonen JVK. Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol. 2006;77(3):329–338. http://dx.doi.org/10.1016/j.aquatox.2006.01.0021645837010.1016/j.aquatox.2006.01.002
  27. O'Gara B, Bohannon VK, Teague MW, Smeaton MB. Copper-induced changes in locomotor behaviors and neuronal physiology of the freshwater oligochaete, Lumbriculus variegatus. Aquat Toxicol. 2004;69(1):51–66. http://dx.doi.org/10.1016/j.aquatox.2004.04.00610.1016/j.aquatox.2004.04.00615210297
  28. Armitage P., Statistical Methods in Medical Research. Blackwell Scientific Publications 1980; Oxford UK; ISBN 0 632 05430 1; 279-301 (the program is available online at https://www.statstodo.com/Comp2Regs_Pgm.php (June 2014)).
DOI: https://doi.org/10.5617/jeb.934 | Journal eISSN: 1891-5469
Language: English
Page range: 92 - 98
Submitted on: Sep 8, 2014
Published on: Dec 3, 2014
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Martina Sammer, Bob Laarhoven, Ernest Mejias, Doekle Yntema, Elmar C. Fuchs, Gert Holler, Georg Brasseur, Ernst Lankmayr, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.