Have a personal or library account? Click to login
Statistical methods for bioimpedance analysis Cover
Open Access
|Apr 2014

References

  1. Hulley SB, Cummings SR, Browner WS, Grady D, Hearst N, Newman TB. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2001. Getting ready to estimate sample size: Hypothesis and underlying principles In: Designing Clinical Research-An epidemiologic approach; pp. 51–63.
  2. Bacchetti P, Wolf LE, Segal MR and McCulloch CE. Ethics and sample size. Am. J. Epidemiol. 2005;161(2):105-110. http://dx.doi.org/10.1093/aje/kwi01410.1093/aje/kwi014
  3. Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilit `a. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 1936;8:3-62.
  4. Miller, RG. Simultaneous statistical inference. 2nd ed. Springer Verlag. 1981, pp. 6-8. http://dx.doi.org/10.1007/978-1-4613-8122-8
  5. Grimnes S and Martinsen ØG. Bioimpedance and Bioelectricity Basics. 2nd edition. Academic Press. 2008.
  6. Bland JM and Bland DG. Statistics Notes: One and two sided tests of significance BMJ. 1994;309:248. http://dx.doi.org/10.1136/bmj.309.6949.248
  7. Dowdy S, Wearden S and Chilko D. Statistics for research. 3rd Edition, Wiley-Interscience. 2011.
  8. Schmider E, Ziegler M, Danay E, Beyer L and Bühner M. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology: Europ. J. Res. Meth. Behav. Social Sci. 2010;6:147-151.
  9. Sheskin DJ. Handbook of parametric and nonparametric statistical procedures. CRC Press. 2011.
  10. Sawilowsky SS, Blair RC and Higgins JJ. An Investigation of the Type I Error and Power Properties of the Rank Transform Procedure in Factorial ANOVA. J. Educ. Stat. 1989;14:255-267. http://dx.doi.org/10.2307/116501810.3102/10769986014003255
  11. Mariscuilo LA and Levin JR. Multivariate statistics in the social sciences: A researcher's guide. Brooks/Cole Pub. Co. (Monterey, California). 1983.
  12. Peres-Neto P, Jackson DA and Somers KM. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. & Data Anal. 2005;49:974-997. http://dx.doi.org/10.1016/j.csda.2004.06.01510.1016/j.csda.2004.06.015
  13. Ryan TP. Modern Regression Methods. 2nd ed. Wiley series in probability and statistics. Wiley. 2008
  14. Tabachnick BG and Fidell LS. Using multivariate statistics (3. ed.). Pearson. New York. 1996.
  15. Breiman L, Friedman J, Olshen R and Stone C. Classification and Regression Trees. Belmont, California: Wadsworth. Dowdy, Wearden, Chilko. Statistics for Research. Wiley Series in Probability and Statistics. 1984.
  16. Dreiseitl S and Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 2003;35:352-359. http://dx.doi.org/10.1016/S1532-0464(03)00034-0
  17. Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques. Informatica. 2007;31:249-268.
  18. Rani P, Liu C, Sarkar N and Vanman E. An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal Applic. 2006;9:58-69. http://dx.doi.org/10.1007/s10044-006-0025-y10.1007/s10044-006-0025-y
  19. JCGM 200:2012. International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 3. ed.
  20. Buderer NM. Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad. Emerg. Med. 1996;3(9):895-900.
  21. Malhotra RK and Indrayan A. A simple nomogram for sample size for estimating sensitivity and specificity of medical tests. Indian J Ophthalmol. 2010;58:519-522. http://dx.doi.org/10.4103/0301-4738.7169910.4103/0301-4738.7169920952837
  22. Bland JM and Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;8:307-310. http://dx.doi.org/10.1016/S0140-6736(86)90837-8
  23. Zaki R, Bulgiba A, Ismail R and Ismail NA. Statistical Methods Used to Test for Agreement of Medical Instruments Measuring Continuous Variables in Method Comparison Studies: A Systematic Review. PLOS one. 2012;7:e37908. http://dx.doi.org/10.1371/journal.pone.003790810.1371/journal.pone.003790822662248
  24. Critchley LAH and Critchley JAJH. A Meta-Analysis of Studies Using Bias and Precision Statistics to Compare Cardiac Output Measurement Techniques. J. Clin. Monitor. Comput. 1999;15:85-91. http://dx.doi.org/10.1023/A:100998261138610.1023/A:1009982611386
  25. Bland JM and Altman DG. A Note on the use of the Intraclass Correlation Coefficient in the Evaluation of Agreement between two Methods of Measurement. Comput. Biol. Med. 1990;20:337-340. http://dx.doi.org/10.1016/0010-4825(90)90013-F10.1016/0010-4825(90)90013-F2257734
  26. Lin L. Overview of Agreement Statistics for Medical Devices. J. Biopharm. Stat. 2007;18:126-144. http://dx.doi.org/10.1080/1054340070166829010.1080/10543400701668290
  27. Arlot S and Celisse A. A survey of cross-validation procedures for model selection. Statistics Surveys. 2010;4:40-79. http://dx.doi.org/10.1214/09-SS05410.1214/09-SS054
  28. Devroye Luc P and Wagner TJ. Distribution-Free performance Bounds for Potential Function Rules. IEEE Trans. Inform. Theory. 1979;25:601-604. http://dx.doi.org/10.1109/TIT.1979.105608710.1109/TIT.1979.1056087
  29. Geisser S. The predictive sample reuse method with applications. J. Amer. Statist. Assoc. 1975;60:320-328.
  30. De Vet HCW, Terwee CB, Knol DL and Bouter LM. When to use agreement versus reliability measures. J. Clin. Epidem. 2006;59:1033-1039. http://dx.doi.org/10.1016/j.jclinepi.2005.10.01510.1016/j.jclinepi.2005.10.015
  31. Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, Roberts C, Shoukri M and Streiner DL. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Int. J. Nursing Studies 2011;48:661-671. http://dx.doi.org/10.1016/j.ijnurstu.2011.01.01610.1016/j.ijnurstu.2011.01.016
  32. Barlett JW and Frost C. Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 2008;31:466-475. http://dx.doi.org/10.1002/uog.525610.1002/uog.525618306169
  33. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond Res. 2005;19:231-240.15705040
  34. Zaki R, Bulgiba A, Nordin N and Ismail NA. A systematic review of statistical methods used to test for reliability of medical instruments measuring continuous variables. Iranian J. Basic Med. Sci. 2013;16:803-807.
  35. Nunnaly JC and Bernstein IH. Psychometric Theory. New York: McGrwaw-Hill. 1994.
  36. Lalkhen AG and McCluskey A. Clinical tests: sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care. Pain. 2008;8:221-223. ttp://dx.doi.org/10.1093/bjaceaccp/mkn04110.1093/bjaceaccp/mkn041
  37. ISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods and results – Part 1: General principles and definitions
  38. Bland JM and Altman DG. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999;8:135-160. http://dx.doi.org/10.1191/09622809967381927210.1177/09622802990080020410501650
  39. Metz CE. Basic principles of ROC analysis. Semin. Nucl. Med. 1978;8:283-298. http://dx.doi.org/10.1016/S0001-2998(78)80014-210.1016/S0001-2998(78)80014-2112681
DOI: https://doi.org/10.5617/jeb.830 | Journal eISSN: 1891-5469
Language: English
Page range: 14 - 27
Submitted on: Mar 5, 2014
Published on: Apr 16, 2014
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Christian Tronstad, Are H. Pripp, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.