Have a personal or library account? Click to login
A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods? Cover

A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

By: Jan Gimsa,  Marco Stubbe and  Ulrike Gimsa  
Open Access
|Nov 2014

References

  1. Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 2000, 61: 45-48. http://dx.doi.org/10.1103/PhysRevE.61.R4510.1103/PhysRevE.61.R45
  2. Asami K, Hanai T, Koizumi N. Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn. J. Appl. Phys. 1980, 19: 359-365. http://dx.doi.org/10.1143/JJAP.19.35910.1143/JJAP.19.359
  3. Barat D, Spencer D, Benazzi, G, Mowlem MC, Morgan H. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip 2012, 12: 118-126. http://dx.doi.org/10.1039/c1lc20785g10.1039/C1LC20785G22051732
  4. Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA. 1995, 92: 860–864. http://dx.doi.org/10.1073/pnas.92.3.86010.1073/pnas.92.3.860
  5. Bousse L, Mcreynolds RJ, Kirk G, Dawes T, Lam P, Bemiss WR. Micromachined multichannel systems for the measurement of cellular-metabolism. Sens. Actuators B-Chemical 1994, 20: 145-150. http://dx.doi.org/10.1016/0925-4005(94)01196-610.1016/0925-4005(94)01196-6
  6. Bousse L, Parce W. Applying silicon micromachining to cellular-metabolism. IEEE Engin. Med. Biol. Mag. 1994, 13: 396-401. http://dx.doi.org/10.1109/51.29401110.1109/51.294011
  7. Buehler SM, Stubbe M, Gimsa U, Baumann W, Gimsa J. A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: measurements in metabolic cell-culture chips. Tox. Lett. 2011, 207: 182-190. http://dx.doi.org/10.1016/j.toxlet.2011.09.00510.1016/j.toxlet.2011.09.005
  8. Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, Ehret R. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal. Biochem. 2007, 371: 92-104. http://dx.doi.org/10.1016/j.ab.2007.07.01410.1016/j.ab.2007.07.01417709091
  9. Daridon A, Fascio V, Lichtenberg J, Wutrich R, Langen H, Verpoorte E, de Rooij NF. Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J. Anal. Chem. 2001, 371: 261-269. http://dx.doi.org/10.1007/s00216010100410.1007/s00216010100411678200
  10. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 2008, 7: 358-368. http://dx.doi.org/10.1038/nrd25521835691910.1038/nrd2552
  11. Dürr M, Kentsch J, Müller T, Schnelle T, Stelzle M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 2003, 24: 722–731. http://dx.doi.org/10.1002/elps.2003900871260174410.1002/elps.200390087
  12. Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 1997, 12: 29-41. http://dx.doi.org/10.1016/0956-5663(96)89087-7897605010.1016/0956-5663(96)89087-7
  13. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006, 442: 403-411. http://dx.doi.org/10.1038/nature0506310.1038/nature05063
  14. Fiedler S, Shirley SG, Schnelle T, Fuhr G. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 1998, 70: 1909-1915. http://dx.doi.org/10.1021/ac971063b10.1021/ac971063b
  15. Foster KR, Schwan HP. 1996, Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields. Polk C, Postow E (Eds.) CRC Press Inc., Boca Raton, FL. 25-102.
  16. Fricke H. Relation of the permittivity of biological cell suspensions to fractional cell volume. Nature 1953, 172: 731–732. http://dx.doi.org/10.1038/172731a010.1038/172731a0
  17. Fuhr G, Hagedorn R, Müller T, Benecke W, Wagner B. Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J. Microelectromech. Syst. 1992, 1: 141-146. http://dx.doi.org/10.1109/84.18639310.1109/84.186393
  18. Fuhr G, Schnelle T, Wagner B. Travelling wave driven microfabricated electrohydrodynamic pumps for liquids. J. Micromech. Microeng. 1994, 4: 217-226. http://dx.doi.org/10.1088/0960-1317/4/4/00710.1088/0960-1317/4/4/007
  19. Fuhr G, Müller T, Glasser H, Gimsa J, Hofmann U, Wagner B. Handling and investigation of adherently growing cells and viruses of medical relevance in three-dimensional micro-structures. MEMS 97, 1997. Proceedings - IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. 344-349.
  20. Fuhr GR, Reichle C. Living cells in opto-electrical cages. Trends Anal. Chem. 2000, 19: 402-409. http://dx.doi.org/10.1016/S0165-9936(00)00015-710.1016/S0165-9936(00)00015-7
  21. García-Sánchez P, Ramos A, Green NG, Morgan H. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. J. Phys. D: Appl. Phys. 2006, 47: 075501
  22. Georgieva R, Neu B, Shilov VM, Knippel E, Budde A, Latza R, Donath E, Kiesewetter, Bäumler H. Low frequency electrorotation of fixed red blood cells. Biophys. J. 1998, 74: 2114-2120. http://dx.doi.org/10.1016/S0006-3495(98)77918-4954507010.1016/S0006-3495(98)77918-4
  23. Gimsa J. New light-scattering and field-trapping methods access the internal structure of submicron particles, like influenza viruses. Riu PJ, Rosell J, Bragos R, Casas O (Eds.) Electrical bio-impedance methods. Applications to medicine and biotechnology. New York: Ann. New York Acad. Sciences. 1999, 287-298.
  24. Gimsa J. A comprehensive approach to electro-orientation, electro-deformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochem. 2001, 54: 23-31. http://dx.doi.org/10.1016/S0302-4598(01)00106-410.1016/S0302-4598(01)00106-4
  25. Gimsa J, Eppmann P, Prüger B. Introducing phase analysis light scattering for dielectric characterization: Measurement of traveling-wave pumping. Biophys. J. 1997, 73: 3309-3316. http://dx.doi.org/10.1016/S0006-3495(97)78355-310.1016/S0006-3495(97)78355-39414241
  26. Gimsa J, Glaser R, Fuhr G. Theory and application of the rotation of biological cells in rotating electric fields (electrorotation). Schütt W, Klinkmann H, Lamprecht I, Wilson T (Eds.) Physical characterization of biological cells (Berlin: Verlag Gesundheit GmbH Berlin) 1991, 295-323.
  27. Gimsa J, Pritzen C, Donath E. Characterization of virus - red cell interaction by electrorotation. Stud. Biophys. 1989, 130: 123-131.
  28. Gimsa J, Wachner D. A unified RC-model for impedance, dielectrophoresis, electrorotation and induced transmembrane potential. Biophys. J. 1998, 75: 1107-1116. http://dx.doi.org/10.1016/S0006-3495(98)77600-310.1016/S0006-3495(98)77600-39675212
  29. Gimsa J, Wachner D. A polarization model overcoming the geometric restrictions of Laplace's solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potential. Biophys. J. 1999, 77: 1316-1326. http://dx.doi.org/10.1016/S0006-3495(99)76981-X1046574410.1016/S0006-3495(99)76981-X
  30. Gimsa J, Wachner D. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 2001, 30: 463-466. http://dx.doi.org/10.1007/s0024901001621171830110.1007/s002490100162
  31. Glynne-Jones P, Hill M, Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab Chip, 2013, 13: 1003-1010. http://dx.doi.org/10.1039/c3lc41369a10.1039/C3LC41369A23385298
  32. Goater AD, Burt JPH, Pethig R. A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of Cryptosporidium. J. Phys. D: Appl. Phys. 1997, 30: L65–L69. http://dx.doi.org/10.1088/0022-3727/30/18/00110.1088/0022-3727/30/18/001
  33. Griffin JL. Orientation of human and avian erythrocytes in radio-frequency fields. Exp. Cell Res. 1970, 61: 113-120. http://dx.doi.org/10.1016/0014-4827(70)90263-6543161010.1016/0014-4827(70)90263-6
  34. Grom F, Kentsch J, Müller T, Schnelle T, Stelzle M. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 2006, 27: 1386 - 1393. http://dx.doi.org/10.1002/elps.20050041610.1002/elps.20050041616568408
  35. Gross GW, Rhoades BK, Azzazy HME, Wu M-C. The use of neuronal networks on multielectrode arrays as biosensors, Biosens. Bioelectr. 1995, 10: 553–567. http://dx.doi.org/10.1016/0956-5663(95)96931-N10.1016/0956-5663(95)96931-N
  36. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 2005, 88: 3689-3698. http://dx.doi.org/10.1529/biophysj.104.0454761572243310.1529/biophysj.104.045476
  37. Hagedorn, R, Fuhr G, Müller T, Gimsa J. 1992. Traveling-wave dielectrophoresis of microparticles. Electrophoresis. 13: 49-54. http://dx.doi.org/10.1002/elps.1150130110158725410.1002/elps.1150130110
  38. Haia A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip, 2012, 12: 2865-2873. http://dx.doi.org/10.1039/c2lc40091j10.1039/c2lc40091j22678065
  39. Hölzel R. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J. 1997, 73: 1103–1109. http://dx.doi.org/10.1016/S0006-3495(97)78142-6925182610.1016/S0006-3495(97)78142-6
  40. Hughes MP, Pethig R, Wang X-B Dielectrophoretic forces on particles in travelling electric fields. J. Phys. D: Appl. Phys. 1996, 29: 474-482. http://dx.doi.org/10.1088/0022-3727/29/2/02910.1088/0022-3727/29/2/029
  41. Jones TB. Electromechanics of Particles, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511574498
  42. Kafka J, Pänke O, Abendroth B, Lisdat F. A label-free DNA sensor based on impedance spectroscopy. Electrochim. Acta. 2008, 53: 7467-7474. http://dx.doi.org/10.1016/j.electacta.2008.01.03110.1016/j.electacta.2008.01.031
  43. Koester PJ, Bühler SM, Stubbe M, Tautorat C, Niendorf M, Baumann W, Gimsa J. Modular glass chip system measuring the electric activity and adhesion of neuronal cells - application and drug testing with sodium valproic acid. Lab Chip 2010a, 10: 1579-1586. http://dx.doi.org/10.1039/b923687b10.1039/b923687b
  44. Koester PJ, Tautorat C, Beikirch H, Gimsa J, Baumann W. Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectr. 2010b, 26: 1731–1735. http://dx.doi.org/10.1016/j.bios.2010.08.00310.1016/j.bios.2010.08.003
  45. Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal. Chem. 2012, 84: 516-540. http://dx.doi.org/10.1021/ac202611x10.1021/ac202611x21967743
  46. Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007, 36: 492-506. http://dx.doi.org/10.1039/b601326k10.1039/B601326K17325788
  47. Liu W, Ren Y, Shao J, Jiang H, Ding Y. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. J. Phys. D: Appl. Phys. 2014, 47: 075501. http://dx.doi.org/10.1088/0022-3727/47/7/07550110.1088/0022-3727/47/7/075501
  48. Maier H. Electrorotation of colloidal particles and cells depends on surface charge. Biophys. J. 1997, 73: 1617-1626. http://dx.doi.org/10.1016/S0006-3495(97)78193-110.1016/S0006-3495(97)78193-19284328
  49. Marczak M, Diesinger H. Traveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer J. Appl. Phys. 2009, 105: 124511. http://dx.doi.org/10.1063/1.315278710.1063/1.3152787
  50. Marszalek P, Liu D-S, Tsong TY. Schwan equation and transmembrane potential induced by alternating electric field. Biophys. J. 1990, 58: 1053-1058. http://dx.doi.org/10.1016/S0006-3495(90)82447-410.1016/S0006-3495(90)82447-42248989
  51. Maswiwat K, Holtappels M, Gimsa J. On the field distribution in electrorotation chambers - influence of electrode shape. Electrochim. Acta. 2006, 51: 5215-5220 http://dx.doi.org/10.1016/j.electacta.2006.03.04810.1016/j.electacta.2006.03.048
  52. Morgan H, Izquierdo AG, Bakewell D, Green NG, Ramos A. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J. Phys. D: App. Phys. 2001, 34: 1553-1561. http://dx.doi.org/10.1088/0022-3727/34/10/31610.1088/0022-3727/34/10/316
  53. Müller T, Gradl G, Howitz S, Shirley S, Schnelle T, G. Fuhr G. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelec. 1999, 14: 247-256. http://dx.doi.org/10.1016/S0956-5663(99)00006-8
  54. Neu B, Georgieva R, Meiselman HJ, Bäumler H. Alpha- and beta-dispersion of fixed platelets: comparison with a structure-based theoretical approach. Coll. Surf. A: Physicochem. Eng. Aspects 2002, 197: 27-35. http://dx.doi.org/10.1016/S0927-7757(01)00860-310.1016/S0927-7757(01)00860-3
  55. Nilsson J, Evander M, Hammarström B, Laurell T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649: 141-157. http://dx.doi.org/10.1016/j.aca.2009.07.0171969939010.1016/j.aca.2009.07.017
  56. Oberti S, Neild A, Möller D, Dual J. Strategies for single particle manipulation using acoustic radiation forces and external tools. Phys. Procedia 2010, 3: 255-262. http://dx.doi.org/10.1016/j.phpro.2010.01.03410.1016/j.phpro.2010.01.034
  57. Pan D, Chen J, Nie L, Tao W, Yao S. An amperometric glucose biosensor based on poly(o-aminophenol) and Prussian blue films at platinum electrode. Anal. Biochem. 2004, 324: 115-122. http://dx.doi.org/10.1016/j.ab.2003.09.02910.1016/j.ab.2003.09.02914654053
  58. Pauly H, Schwan HP. Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Z. Naturforsch. 1959, 14b: 125-131. (in German)
  59. Perch-Nielsen IR, Green NG, Wolff A. Numerical simulation of travelling wave induced electrothermal fluid flow. J. Phys. D: Appl. Phys. 2004, 37: 2323-2330.10.1088/0022-3727/37/16/016
  60. Pethig R, Talary MS, Lee RS. Enhancing traveling-wave dielectrophoresis with signal superposition. IEEE Eng. Med. Biol. Mag. 2003, 22: 43-50. http://dx.doi.org/10.1109/MEMB.2003.12660461500799010.1109/MEMB.2003.1266046
  61. Py C, Salim D, Monette R, Comas T, Fraser J, Martinez D, Martina M, Mealing G. Cell to aperture interaction in patch-clamp chips visualized by fluorescence microscopy and focused-ion beam sections. Biotech. Bioeng. 2011, 108: 1936-1941. http://dx.doi.org/10.1002/bit.2312710.1002/bit.23127
  62. Ramos A, Morgan H, Green NG, González A, Castellanos A. Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys. 2005, 97: 084906. http://dx.doi.org/10.1063/1.187303410.1063/1.1873034
  63. Retelj L, Pucihar G, Miklavcic D, Electroporation of intracellular liposomes using nanosecond electric pulses - a theoretical study. IEEE Trans. Biomed. Eng. 2013, 60: 2624–2635. http://dx.doi.org/10.1109/TBME.2013.2262177
  64. Schnelle T, Müller T, Reichle C, Fuhr G. Combined dielectrophoretic field cages and laser tweezers for electrorotation. Appl. Phys. B 2000, 70: 267-274. http://dx.doi.org/10.1007/s00340005004410.1007/s003400050044
  65. Schwan, HP. Biophysics of the interaction of electromagnetic energy with cells and membranes. In: Grandolfo M, Michaelson SM, Rindi A (Eds.) Biological effects and dosimetry of nonionizing radiation. 1983. Plenum Press, New York (USA), pp. 213-231. http://dx.doi.org/10.1007/978-1-4684-4253-3_9
  66. Schwan HP, Schwarz G., Maczuk J, Pauly H. On the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J. Phys. Chem. 1962, 66: 2626-2635. http://dx.doi.org/10.1021/j100818a06610.1021/j100818a066
  67. Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher PF, Beebe SJ. Ultrashort electrical pulses open a new gateway into biological cells. Proc. IEEE 2004, 92: 1122-1137. http://dx.doi.org/10.1109/JPROC.2004.82900910.1109/JPROC.2004.829009
  68. Shih SCC, Barbulovic-Nad I, Yang X, Fobel R, Wheeler AR. Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens. Bioelectr. 2013, 42: 314-320. http://dx.doi.org/10.1016/j.bios.2012.10.03510.1016/j.bios.2012.10.035
  69. Simeonova M, Wachner D, Gimsa J. Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochem. 2002, 56: 215-218. http://dx.doi.org/10.1016/S1567-5394(02)00010-510.1016/S1567-5394(02)00010-5
  70. Stubbe M, Holtappels M, Gimsa J. A new working principle for ac electro-hydrodynamic on-chip micro-pumps. J. Phys. D: Appl. Phys. 2007, 40: 6850-6856. http://dx.doi.org/10.1088/0022-3727/40/21/05510.1088/0022-3727/40/21/055
  71. Stubbe M, Gyurova A, Gimsa J. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: High pumping velocities induced by the external inductance at driving voltages below 5V. Electrophoresis 2013, 34: 562-574. http://dx.doi.org/10.1002/elps.20120034010.1002/elps.201200340
  72. Stubbe M, Gimsa, J. Electro-thermal Micro-pumps: exploiting structural polarizations at smeared interfaces. NSTI-Nanotech 2013, 2: 334-337.
  73. Sun T, Morgan H. Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 2010, 8: 423-443. http://dx.doi.org/10.1007/s10404-010-0580-910.1007/s10404-010-0580-9
  74. Urbanski JP, Thorsen T, Levitan JA, Bazant MZ. Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl. Phys. Lett. 2006, 89: 143508. http://dx.doi.org/10.1063/1.235882310.1063/1.2358823
  75. Wachner D, Simeonova M, Gimsa J. Estimating the subcellular absorption of electric field energy: equations for an ellipsoidal single shell model. Bioelectrochem. 2002, 56: 211-213. http://dx.doi.org/10.1016/S1567-5394(02)00020-810.1016/S1567-5394(02)00020-8
  76. Wolf B, Brischwein M, Grothe H, Stepper C, Ressler J, Weyh T. Lab-on-a-chip systems for cellular assays. In: Urban G (Ed.) BioMEMS. 2006. Springer, Dordrecht (NL), pp. 269-308.
  77. Yang CY, Lei U. Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis. J. Appl. Phys. 2007, 102: 094702. http://dx.doi.org/10.1063/1.280218510.1063/1.2802185
  78. Zimmerman V, Shilov VN, López-Garcia JJ, Grosse C. Numerical calculation of the electrorotation velocity of latex-type particles. J. Phys. Chem. B 2002, 106: 13384-13392.10.1021/jp026127n
DOI: https://doi.org/10.5617/jeb.557 | Journal eISSN: 1891-5469
Language: English
Page range: 74 - 91
Submitted on: Feb 7, 2013
Published on: Nov 2, 2014
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Jan Gimsa, Marco Stubbe, Ulrike Gimsa, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.