References
- Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 2000, 61: 45-48. http://dx.doi.org/10.1103/PhysRevE.61.R4510.1103/PhysRevE.61.R45
- Asami K, Hanai T, Koizumi N. Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn. J. Appl. Phys. 1980, 19: 359-365. http://dx.doi.org/10.1143/JJAP.19.35910.1143/JJAP.19.359
- Barat D, Spencer D, Benazzi, G, Mowlem MC, Morgan H. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip 2012, 12: 118-126. http://dx.doi.org/10.1039/c1lc20785g10.1039/C1LC20785G22051732
- Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA. 1995, 92: 860–864. http://dx.doi.org/10.1073/pnas.92.3.86010.1073/pnas.92.3.860
- Bousse L, Mcreynolds RJ, Kirk G, Dawes T, Lam P, Bemiss WR. Micromachined multichannel systems for the measurement of cellular-metabolism. Sens. Actuators B-Chemical 1994, 20: 145-150. http://dx.doi.org/10.1016/0925-4005(94)01196-610.1016/0925-4005(94)01196-6
- Bousse L, Parce W. Applying silicon micromachining to cellular-metabolism. IEEE Engin. Med. Biol. Mag. 1994, 13: 396-401. http://dx.doi.org/10.1109/51.29401110.1109/51.294011
- Buehler SM, Stubbe M, Gimsa U, Baumann W, Gimsa J. A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: measurements in metabolic cell-culture chips. Tox. Lett. 2011, 207: 182-190. http://dx.doi.org/10.1016/j.toxlet.2011.09.00510.1016/j.toxlet.2011.09.005
- Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, Ehret R. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal. Biochem. 2007, 371: 92-104. http://dx.doi.org/10.1016/j.ab.2007.07.01410.1016/j.ab.2007.07.01417709091
- Daridon A, Fascio V, Lichtenberg J, Wutrich R, Langen H, Verpoorte E, de Rooij NF. Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J. Anal. Chem. 2001, 371: 261-269. http://dx.doi.org/10.1007/s00216010100410.1007/s00216010100411678200
- Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 2008, 7: 358-368. http://dx.doi.org/10.1038/nrd25521835691910.1038/nrd2552
- Dürr M, Kentsch J, Müller T, Schnelle T, Stelzle M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 2003, 24: 722–731. http://dx.doi.org/10.1002/elps.2003900871260174410.1002/elps.200390087
- Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 1997, 12: 29-41. http://dx.doi.org/10.1016/0956-5663(96)89087-7897605010.1016/0956-5663(96)89087-7
- El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006, 442: 403-411. http://dx.doi.org/10.1038/nature0506310.1038/nature05063
- Fiedler S, Shirley SG, Schnelle T, Fuhr G. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 1998, 70: 1909-1915. http://dx.doi.org/10.1021/ac971063b10.1021/ac971063b
- Foster KR, Schwan HP. 1996, Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields. Polk C, Postow E (Eds.) CRC Press Inc., Boca Raton, FL. 25-102.
- Fricke H. Relation of the permittivity of biological cell suspensions to fractional cell volume. Nature 1953, 172: 731–732. http://dx.doi.org/10.1038/172731a010.1038/172731a0
- Fuhr G, Hagedorn R, Müller T, Benecke W, Wagner B. Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J. Microelectromech. Syst. 1992, 1: 141-146. http://dx.doi.org/10.1109/84.18639310.1109/84.186393
- Fuhr G, Schnelle T, Wagner B. Travelling wave driven microfabricated electrohydrodynamic pumps for liquids. J. Micromech. Microeng. 1994, 4: 217-226. http://dx.doi.org/10.1088/0960-1317/4/4/00710.1088/0960-1317/4/4/007
- Fuhr G, Müller T, Glasser H, Gimsa J, Hofmann U, Wagner B. Handling and investigation of adherently growing cells and viruses of medical relevance in three-dimensional micro-structures. MEMS 97, 1997. Proceedings - IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. 344-349.
- Fuhr GR, Reichle C. Living cells in opto-electrical cages. Trends Anal. Chem. 2000, 19: 402-409. http://dx.doi.org/10.1016/S0165-9936(00)00015-710.1016/S0165-9936(00)00015-7
- García-Sánchez P, Ramos A, Green NG, Morgan H. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. J. Phys. D: Appl. Phys. 2006, 47: 075501
- Georgieva R, Neu B, Shilov VM, Knippel E, Budde A, Latza R, Donath E, Kiesewetter, Bäumler H. Low frequency electrorotation of fixed red blood cells. Biophys. J. 1998, 74: 2114-2120. http://dx.doi.org/10.1016/S0006-3495(98)77918-4954507010.1016/S0006-3495(98)77918-4
- Gimsa J. New light-scattering and field-trapping methods access the internal structure of submicron particles, like influenza viruses. Riu PJ, Rosell J, Bragos R, Casas O (Eds.) Electrical bio-impedance methods. Applications to medicine and biotechnology. New York: Ann. New York Acad. Sciences. 1999, 287-298.
- Gimsa J. A comprehensive approach to electro-orientation, electro-deformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochem. 2001, 54: 23-31. http://dx.doi.org/10.1016/S0302-4598(01)00106-410.1016/S0302-4598(01)00106-4
- Gimsa J, Eppmann P, Prüger B. Introducing phase analysis light scattering for dielectric characterization: Measurement of traveling-wave pumping. Biophys. J. 1997, 73: 3309-3316. http://dx.doi.org/10.1016/S0006-3495(97)78355-310.1016/S0006-3495(97)78355-39414241
- Gimsa J, Glaser R, Fuhr G. Theory and application of the rotation of biological cells in rotating electric fields (electrorotation). Schütt W, Klinkmann H, Lamprecht I, Wilson T (Eds.) Physical characterization of biological cells (Berlin: Verlag Gesundheit GmbH Berlin) 1991, 295-323.
- Gimsa J, Pritzen C, Donath E. Characterization of virus - red cell interaction by electrorotation. Stud. Biophys. 1989, 130: 123-131.
- Gimsa J, Wachner D. A unified RC-model for impedance, dielectrophoresis, electrorotation and induced transmembrane potential. Biophys. J. 1998, 75: 1107-1116. http://dx.doi.org/10.1016/S0006-3495(98)77600-310.1016/S0006-3495(98)77600-39675212
- Gimsa J, Wachner D. A polarization model overcoming the geometric restrictions of Laplace's solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potential. Biophys. J. 1999, 77: 1316-1326. http://dx.doi.org/10.1016/S0006-3495(99)76981-X1046574410.1016/S0006-3495(99)76981-X
- Gimsa J, Wachner D. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 2001, 30: 463-466. http://dx.doi.org/10.1007/s0024901001621171830110.1007/s002490100162
- Glynne-Jones P, Hill M, Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab Chip, 2013, 13: 1003-1010. http://dx.doi.org/10.1039/c3lc41369a10.1039/C3LC41369A23385298
- Goater AD, Burt JPH, Pethig R. A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of Cryptosporidium. J. Phys. D: Appl. Phys. 1997, 30: L65–L69. http://dx.doi.org/10.1088/0022-3727/30/18/00110.1088/0022-3727/30/18/001
- Griffin JL. Orientation of human and avian erythrocytes in radio-frequency fields. Exp. Cell Res. 1970, 61: 113-120. http://dx.doi.org/10.1016/0014-4827(70)90263-6543161010.1016/0014-4827(70)90263-6
- Grom F, Kentsch J, Müller T, Schnelle T, Stelzle M. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 2006, 27: 1386 - 1393. http://dx.doi.org/10.1002/elps.20050041610.1002/elps.20050041616568408
- Gross GW, Rhoades BK, Azzazy HME, Wu M-C. The use of neuronal networks on multielectrode arrays as biosensors, Biosens. Bioelectr. 1995, 10: 553–567. http://dx.doi.org/10.1016/0956-5663(95)96931-N10.1016/0956-5663(95)96931-N
- Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 2005, 88: 3689-3698. http://dx.doi.org/10.1529/biophysj.104.0454761572243310.1529/biophysj.104.045476
- Hagedorn, R, Fuhr G, Müller T, Gimsa J. 1992. Traveling-wave dielectrophoresis of microparticles. Electrophoresis. 13: 49-54. http://dx.doi.org/10.1002/elps.1150130110158725410.1002/elps.1150130110
- Haia A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip, 2012, 12: 2865-2873. http://dx.doi.org/10.1039/c2lc40091j10.1039/c2lc40091j22678065
- Hölzel R. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J. 1997, 73: 1103–1109. http://dx.doi.org/10.1016/S0006-3495(97)78142-6925182610.1016/S0006-3495(97)78142-6
- Hughes MP, Pethig R, Wang X-B Dielectrophoretic forces on particles in travelling electric fields. J. Phys. D: Appl. Phys. 1996, 29: 474-482. http://dx.doi.org/10.1088/0022-3727/29/2/02910.1088/0022-3727/29/2/029
- Jones TB. Electromechanics of Particles, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511574498
- Kafka J, Pänke O, Abendroth B, Lisdat F. A label-free DNA sensor based on impedance spectroscopy. Electrochim. Acta. 2008, 53: 7467-7474. http://dx.doi.org/10.1016/j.electacta.2008.01.03110.1016/j.electacta.2008.01.031
- Koester PJ, Bühler SM, Stubbe M, Tautorat C, Niendorf M, Baumann W, Gimsa J. Modular glass chip system measuring the electric activity and adhesion of neuronal cells - application and drug testing with sodium valproic acid. Lab Chip 2010a, 10: 1579-1586. http://dx.doi.org/10.1039/b923687b10.1039/b923687b
- Koester PJ, Tautorat C, Beikirch H, Gimsa J, Baumann W. Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectr. 2010b, 26: 1731–1735. http://dx.doi.org/10.1016/j.bios.2010.08.00310.1016/j.bios.2010.08.003
- Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal. Chem. 2012, 84: 516-540. http://dx.doi.org/10.1021/ac202611x10.1021/ac202611x21967743
- Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007, 36: 492-506. http://dx.doi.org/10.1039/b601326k10.1039/B601326K17325788
- Liu W, Ren Y, Shao J, Jiang H, Ding Y. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. J. Phys. D: Appl. Phys. 2014, 47: 075501. http://dx.doi.org/10.1088/0022-3727/47/7/07550110.1088/0022-3727/47/7/075501
- Maier H. Electrorotation of colloidal particles and cells depends on surface charge. Biophys. J. 1997, 73: 1617-1626. http://dx.doi.org/10.1016/S0006-3495(97)78193-110.1016/S0006-3495(97)78193-19284328
- Marczak M, Diesinger H. Traveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer J. Appl. Phys. 2009, 105: 124511. http://dx.doi.org/10.1063/1.315278710.1063/1.3152787
- Marszalek P, Liu D-S, Tsong TY. Schwan equation and transmembrane potential induced by alternating electric field. Biophys. J. 1990, 58: 1053-1058. http://dx.doi.org/10.1016/S0006-3495(90)82447-410.1016/S0006-3495(90)82447-42248989
- Maswiwat K, Holtappels M, Gimsa J. On the field distribution in electrorotation chambers - influence of electrode shape. Electrochim. Acta. 2006, 51: 5215-5220 http://dx.doi.org/10.1016/j.electacta.2006.03.04810.1016/j.electacta.2006.03.048
- Morgan H, Izquierdo AG, Bakewell D, Green NG, Ramos A. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J. Phys. D: App. Phys. 2001, 34: 1553-1561. http://dx.doi.org/10.1088/0022-3727/34/10/31610.1088/0022-3727/34/10/316
- Müller T, Gradl G, Howitz S, Shirley S, Schnelle T, G. Fuhr G. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelec. 1999, 14: 247-256. http://dx.doi.org/10.1016/S0956-5663(99)00006-8
- Neu B, Georgieva R, Meiselman HJ, Bäumler H. Alpha- and beta-dispersion of fixed platelets: comparison with a structure-based theoretical approach. Coll. Surf. A: Physicochem. Eng. Aspects 2002, 197: 27-35. http://dx.doi.org/10.1016/S0927-7757(01)00860-310.1016/S0927-7757(01)00860-3
- Nilsson J, Evander M, Hammarström B, Laurell T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649: 141-157. http://dx.doi.org/10.1016/j.aca.2009.07.0171969939010.1016/j.aca.2009.07.017
- Oberti S, Neild A, Möller D, Dual J. Strategies for single particle manipulation using acoustic radiation forces and external tools. Phys. Procedia 2010, 3: 255-262. http://dx.doi.org/10.1016/j.phpro.2010.01.03410.1016/j.phpro.2010.01.034
- Pan D, Chen J, Nie L, Tao W, Yao S. An amperometric glucose biosensor based on poly(o-aminophenol) and Prussian blue films at platinum electrode. Anal. Biochem. 2004, 324: 115-122. http://dx.doi.org/10.1016/j.ab.2003.09.02910.1016/j.ab.2003.09.02914654053
- Pauly H, Schwan HP. Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Z. Naturforsch. 1959, 14b: 125-131. (in German)
- Perch-Nielsen IR, Green NG, Wolff A. Numerical simulation of travelling wave induced electrothermal fluid flow. J. Phys. D: Appl. Phys. 2004, 37: 2323-2330.10.1088/0022-3727/37/16/016
- Pethig R, Talary MS, Lee RS. Enhancing traveling-wave dielectrophoresis with signal superposition. IEEE Eng. Med. Biol. Mag. 2003, 22: 43-50. http://dx.doi.org/10.1109/MEMB.2003.12660461500799010.1109/MEMB.2003.1266046
- Py C, Salim D, Monette R, Comas T, Fraser J, Martinez D, Martina M, Mealing G. Cell to aperture interaction in patch-clamp chips visualized by fluorescence microscopy and focused-ion beam sections. Biotech. Bioeng. 2011, 108: 1936-1941. http://dx.doi.org/10.1002/bit.2312710.1002/bit.23127
- Ramos A, Morgan H, Green NG, González A, Castellanos A. Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys. 2005, 97: 084906. http://dx.doi.org/10.1063/1.187303410.1063/1.1873034
- Retelj L, Pucihar G, Miklavcic D, Electroporation of intracellular liposomes using nanosecond electric pulses - a theoretical study. IEEE Trans. Biomed. Eng. 2013, 60: 2624–2635. http://dx.doi.org/10.1109/TBME.2013.2262177
- Schnelle T, Müller T, Reichle C, Fuhr G. Combined dielectrophoretic field cages and laser tweezers for electrorotation. Appl. Phys. B 2000, 70: 267-274. http://dx.doi.org/10.1007/s00340005004410.1007/s003400050044
- Schwan, HP. Biophysics of the interaction of electromagnetic energy with cells and membranes. In: Grandolfo M, Michaelson SM, Rindi A (Eds.) Biological effects and dosimetry of nonionizing radiation. 1983. Plenum Press, New York (USA), pp. 213-231. http://dx.doi.org/10.1007/978-1-4684-4253-3_9
- Schwan HP, Schwarz G., Maczuk J, Pauly H. On the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J. Phys. Chem. 1962, 66: 2626-2635. http://dx.doi.org/10.1021/j100818a06610.1021/j100818a066
- Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher PF, Beebe SJ. Ultrashort electrical pulses open a new gateway into biological cells. Proc. IEEE 2004, 92: 1122-1137. http://dx.doi.org/10.1109/JPROC.2004.82900910.1109/JPROC.2004.829009
- Shih SCC, Barbulovic-Nad I, Yang X, Fobel R, Wheeler AR. Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens. Bioelectr. 2013, 42: 314-320. http://dx.doi.org/10.1016/j.bios.2012.10.03510.1016/j.bios.2012.10.035
- Simeonova M, Wachner D, Gimsa J. Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochem. 2002, 56: 215-218. http://dx.doi.org/10.1016/S1567-5394(02)00010-510.1016/S1567-5394(02)00010-5
- Stubbe M, Holtappels M, Gimsa J. A new working principle for ac electro-hydrodynamic on-chip micro-pumps. J. Phys. D: Appl. Phys. 2007, 40: 6850-6856. http://dx.doi.org/10.1088/0022-3727/40/21/05510.1088/0022-3727/40/21/055
- Stubbe M, Gyurova A, Gimsa J. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: High pumping velocities induced by the external inductance at driving voltages below 5V. Electrophoresis 2013, 34: 562-574. http://dx.doi.org/10.1002/elps.20120034010.1002/elps.201200340
- Stubbe M, Gimsa, J. Electro-thermal Micro-pumps: exploiting structural polarizations at smeared interfaces. NSTI-Nanotech 2013, 2: 334-337.
- Sun T, Morgan H. Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 2010, 8: 423-443. http://dx.doi.org/10.1007/s10404-010-0580-910.1007/s10404-010-0580-9
- Urbanski JP, Thorsen T, Levitan JA, Bazant MZ. Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl. Phys. Lett. 2006, 89: 143508. http://dx.doi.org/10.1063/1.235882310.1063/1.2358823
- Wachner D, Simeonova M, Gimsa J. Estimating the subcellular absorption of electric field energy: equations for an ellipsoidal single shell model. Bioelectrochem. 2002, 56: 211-213. http://dx.doi.org/10.1016/S1567-5394(02)00020-810.1016/S1567-5394(02)00020-8
- Wolf B, Brischwein M, Grothe H, Stepper C, Ressler J, Weyh T. Lab-on-a-chip systems for cellular assays. In: Urban G (Ed.) BioMEMS. 2006. Springer, Dordrecht (NL), pp. 269-308.
- Yang CY, Lei U. Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis. J. Appl. Phys. 2007, 102: 094702. http://dx.doi.org/10.1063/1.280218510.1063/1.2802185
- Zimmerman V, Shilov VN, López-Garcia JJ, Grosse C. Numerical calculation of the electrorotation velocity of latex-type particles. J. Phys. Chem. B 2002, 106: 13384-13392.10.1021/jp026127n