Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11
![Volume fraction dependencies of fc1IMP$f_{c1}^{IMP}$obtained from four different models for σi>>σe, σi=σe,${{\sigma }_{i}}>>{{\sigma }_{e}},\,\,\,{{\sigma }_{i}}={{\sigma }_{e}},$and σi=0.001σe.${{\sigma }_{i}}=0.001{{\sigma }_{\text{e}}}.$Equation (18) corresponds to the complete model of Foster and Schwan [1996] (dotted lines). While their simplified fc1IMP$f_{c1}^{IMP}$expression slightly increases with p (full lines), the new equation (20) predicts a moderate decrease (dashed lines), in accordance with the complete models. In all models, the points for p=0 are identical with fc1IMP=fc1$[f_{c1}^{IMP}={{f}_{c1}}$(equations 20-23).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64721f05215d2f6c89dbc9fa/j_jeb.557_fig_011.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251208%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251208T114208Z&X-Amz-Expires=3600&X-Amz-Signature=723513b5ba79fdb1f1ca494a6b7e997bfbe289c4cd3c8dc22eff7c2e61030c1f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 12
![Top- (a, b) and side-view (c) sketches of directly heated ETμP (a), T-channel ETμP (b), and ETTWμP (c) structures with temperature distributions in gray scaling (one gray step corresponds to approximately 1 K), fluid channel and metal-layer geometries. For the heat conductivities of the channel walls, bottom and cover see Stubbe et al. [2007]. Circumferences of field electrodes (E) and fluid channels are marked by thin and bold lines, respectively. G and H in (a) designate the common ground connector for field generation and the resistive heating meander. Straight arrows designate averaged medium velocities below the Maxwell-Wagner frequency (a and b) or in the β-dispersion range (c). Bent arrows in (c) sketch the effective AC and TW field distribution.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64721f05215d2f6c89dbc9fa/j_jeb.557_fig_012.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251208%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251208T114208Z&X-Amz-Expires=3600&X-Amz-Signature=2e7f8b1c30597909c4d9bd63df08e7b541550c15e838bc3dde229bbde5052e56&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 13
![Idealized time-averaged volume forces FE$\left\langle {{F}_{E}} \right\rangle $of aqueous medium with a relative permittivity of 80 and a specific conductivity of 1.3 S/m over field frequency. The solid curve corresponds to finite-element simulations for the ETμP structures of Figures 11a and 13b obtained for an effective field-electrode voltage of 20 VPP over 390 μm field-electrode distance and a temperature difference across the electrode gap of approximately 5 K [Stubbe et al. 2013]. The dashed line presents the maximum force generated in a ETTWμP under the same conditions. The pump-peak frequency corresponds to the center frequency between the two ETμP plateaus.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64721f05215d2f6c89dbc9fa/j_jeb.557_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251208%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251208T114208Z&X-Amz-Expires=3600&X-Amz-Signature=963da28cac8e22f1e97ae5d94fd072cade3d819606a414ea8cae52bcd98f848d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 14

Fig. 15

Fig. 16

Standard parameters of the spherical cell model_
| Parameter | Value |
|---|---|
| Cell radius (r) | 5 μm |
| Membrane thickness (d) | 8 nm |
| Conductivities | |
| external (σe) | 0.1 S/m |
| membrane (σm) | 10-6 S/m corresponding to 125 S/m2 |
| internal (σi) | 0.01σe to σi>>σe |
| Relative permittivities ε | |
| external ( e) | 80 |
| membrane (ε) mε | 9.04 corresponding to 0.01 F/m2 |
| internal ( i) | 50 |
| Volume fraction (p) | ≤10% (not for single cell calculations) |
| External field strength for calculation of transmembrane potential | 133.33 kV/m |