Have a personal or library account? Click to login
Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements Cover

Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements

Open Access
|Oct 2012

References

  1. M. Egawa, H. Tagami. Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration. Br J Dermatol. 2008;158:251-260. http://dx.doi.org/10.1111/j.1365-2133.2007.08311.x18047517
  2. J. M. Crowther, A. Sieg, P. Blenkiron, C. Marcott, P. J. Matts, J. R. Kaczvinsky, A. V. Rawlings. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol. 2008;159:567–577. http://dx.doi.org/10.1111/j.1365-2133.2008.08703.x18616783
  3. M. Huzaira, F. Rius, M. Rajadhyaksha, R. R. Anderson, S. Gonzáles. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol. 2001;116:846-852. http://dx.doi.org/10.1046/j.0022-202x.2001.01337.x10.1046/j.0022-202x.2001.01337.x11407970
  4. T. L. Moore, M. Lunt, B. McManus, M. E. Anderson, A. L. Herrick. Seventeen-point dermal ultrasound scoring system-a reliable measure of skin thickness in patients with systemic sclerosis. Rheumatology 2003;42:1559-1563. http://dx.doi.org/10.1093/rheumatology/keg43510.1093/rheumatology/keg43512867579
  5. J. Sandby-Moller, T. Poulsen, H. C. Wulf. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83:410-413. http://dx.doi.org/10.1080/000155503100154191469033310.1080/00015550310015419
  6. K. Holbrook, G. Odland. Regional differences in the thickness (cell layers) of the human stratum corneum: An ultrastructral analysis. J Invest Dermatol. 1974;62:415-422. http://dx.doi.org/10.1111/1523-1747.ep1270167010.1111/1523-1747.ep12701670
  7. D. A. Schwindt, K. P. Wilhelm, H. I. Maibach. Water diffusion characteristics of human stratum corneum at different anatomical sites in vivo. J Invest Dermatol. 1998;111:385-389. http://dx.doi.org/10.1046/j.1523-1747.1998.00321.x974022810.1046/j.1523-1747.1998.00321.x
  8. U. Birgersson, E. Birgersson, P. Åberg, I. Nicander, S. Ollmar. Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiol. Meas. 2011;32:1-18. http://dx.doi.org/10.1088/0967-3334/32/1/0012109891110.1088/0967-3334/32/1/001
  9. Walker DC, Brown B H, Smallwood R H, Hose DR, Jones D M. Modelled current distribution in cervical squamous. Physiol. Meas. 2002;23:159-68. http://dx.doi.org/10.1088/0967-3334/23/1/3151187622910.1088/0967-3334/23/1/315
  10. Jones D M, Smallwood R H, Hose DR, Brown B H, Walker D C. Modelling of epithelial tissue impedance measured using three different design of probe. Physiol. Meas. 2003;24:60523. http://dx.doi.org/10.1088/0967-3334/24/2/369
  11. Walker D C, Brown B H, Blackett A D, Tidy J, Smallwood R H. A study of the morphological parameters of cervical squamous epithelium. Physiol. Meas. 2003;24:121-35. http://dx.doi.org/10.1088/0967-3334/24/1/3091263619110.1088/0967-3334/24/1/309
  12. Walker D C, Brown B H, Smallwood R H, Hose D R, Jones D M. Modelling the electrical properties of bladder tissue–quantifying impedance changes due to infiammation and oedema. Physiol. Meas. 2005;26:251-68. http://dx.doi.org/10.1088/0967-3334/26/3/01010.1088/0967-3334/26/3/010
  13. Keshtkar A, Keshtkar A, Smallwood R H. Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiol. Meas. 2006;27:586-96. http://dx.doi.org/10.1088/0967-3334/27/7/003
  14. Hartinger A E, Guardo R, Kokta V, Gagnon H. A 3D hybrid finite element model to characterize the electrical behavior of cutaneous tissues. IEEE Trans. Biomed. Eng. 2010;57:780-9. http://dx.doi.org/10.1109/TBME.2009.203637110.1109/TBME.2009.2036371
  15. SciBase, Scibase ab homepage, http://www.scibase.se
  16. Åberg P. Skin cancer as seen by electrical impedance PhD thesis Karolinska Institutet. Stockholm, Sweden. 2004.
  17. U. Birgersson, E. Birgersson, S. Ollmar. A methodology for extracting the electrical properties of human skin. Manuscript submitted for publication in Physiol. Meas. 2012.
  18. J. J. Ackmann, M. A. Seitz. Methods of complex impedance measurements in biologic tissue. Crit Rev Biomed Eng. 1984;11:281-311.6391815
  19. O. G. Martinsen, S. Grimnes, E. Haug. Measuring depth depends on frequency in electrical skin impedance measurements. Skin Res Technol. 1999;5:179-181. http://dx.doi.org/10.1111/j.1600-0846.1999.tb00128.x10.1111/j.1600-0846.1999.tb00128.x
  20. COMSOL, Multiphysics Multiphysics 3.5a, http://www.comsol.com
DOI: https://doi.org/10.5617/jeb.400 | Journal eISSN: 1891-5469
Language: English
Page range: 51 - 60
Submitted on: Sep 6, 2012
Published on: Oct 22, 2012
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2012 U. Birgersson, E. Birgersson, S. Ollmar, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.