Have a personal or library account? Click to login
The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model Cover

The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model

Open Access
|Aug 2012

References

  1. Jean-François F, Elezgaray J, Berson P, Vacher P, Dufourc EJ. Pore formation induced by an antimicrobial peptide: electrostatic effects. Biophysical Journal. 2008; 95(12):574856. http://dx.doi.org/10.1529/biophysj.108.136655
  2. Cervera J, Komarov AG, Aguilella VM. Rectification properties and pH-dependent selectivity of meningococcal class 1 porin. Biophysical Journal. 2008; 94(4):1194-202. http://dx.doi.org/10.1529/biophysj.107.1161861796513110.1529/biophysj.107.116186
  3. Constantin D, Siwy ZS. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Physical Review E. 2007; 76(4):041202. http://dx.doi.org/10.1103/PhysRevE.76.04120210.1103/PhysRevE.76.041202
  4. Ramírez P, Gómez V, Cervera J, Schiedt B, Mafé S. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics. 2007; 126:194703. http://dx.doi.org/10.1063/1.27356081752382410.1063/1.2735608
  5. Hänggi P, Marchesoni F. Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics. 2009; 81(1):387. http://dx.doi.org/10.1103/RevModPhys.81.38710.1103/RevModPhys.81.387
  6. Bazant MZ, Squires TM. Induced-charge electrokinetic phenomena. Current Opinion in Colloid & Interface Science. 2010; 15(3):203-13. http://dx.doi.org/10.1016/j.cocis.2010.01.00310.1016/j.cocis.2010.01.003
  7. Chizmadzhev YA, Zarnitsin VG, Weaver JC, Potts RO. Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophysical Journal. 1995; 68(3):749-65. http://dx.doi.org/10.1016/S0006-3495(95)80250-X775654210.1016/S0006-3495(95)80250-X
  8. Weaver JC, Vaughan TE, Chizmadzhev Y. Theory of electrical creation of aqueous pathways across skin transport barriers. Advanced Drug Delivery Reviews. 1999; 35(1):2139. http://dx.doi.org/10.1016/S0169-409X(98)00061-1
  9. Li J, Lin H. The current-voltage relation for electropores with conductivity gradients. Biomicrofluidics. 2010; 4:013206. http://dx.doi.org/10.1063/1.332484710.1063/1.3324847
  10. Kuyucak S, Andersen OS, Chung SH. Models of permeation in ion channels. Reports on Progress in Physics. 2001; 64:1427. http://dx.doi.org/10.1088/0034-4885/64/11/20210.1088/0034-4885/64/11/202
  11. Bazant MZ, Kilic MS, Storey BD, Ajdari A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Advances in Colloid and Interface Science. 2009; 152(1-2):48-88. http://dx.doi.org/10.1016/j.cis.2009.10.0011987955210.1016/j.cis.2009.10.001
  12. DeBruin KA, Krassowska W. Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophysical Journal. 1999; 77(3):1225-33. http://dx.doi.org/10.1016/S0006-3495(99)76974-210.1016/S0006-3495(99)76974-2
  13. Neumcke B, Läuger P. Nonlinear electrical effects in lipid bilayer membranes: II. Integration of the generalized Nernst-Planck equations. Biophysical Journal. 1969; 9(9):1160-70. http://dx.doi.org/10.1016/S0006-3495(69)86443-X10.1016/S0006-3495(69)86443-X5807223
  14. Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E. 2007; 75(2):021502. http://dx.doi.org/10.1103/PhysRevE.75.02150210.1103/PhysRevE.75.021502
  15. Levitt D. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophysical Journal. 1978; 22(2):209-19. http://dx.doi.org/10.1016/S0006-3495(78)85485-X65654210.1016/S0006-3495(78)85485-X
  16. Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1988; 940(2):275-87. http://dx.doi.org/10.1016/0005-2736(88)90202-710.1016/0005-2736(88)90202-7
  17. Glaser R. Appearance of a “critical voltage” in reversible electric breakdown. Studia Biophysica. 1986; 116:77-86.
  18. Bolintineanu DS, Sayyed-Ahmad A, Davis HT, Kaznessis YN. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol. 2009; 5(1):1-12. http://dx.doi.org/10.1371/journal.pcbi.1000277
  19. Heimburg T. Lipid ion channels. Biophysical Chemistry. 2010; 150(1-3):2-22. http://dx.doi.org/10.1016/j.bpc.2010.02.01810.1016/j.bpc.2010.02.01820385440
  20. He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS. Tuning transport properties of nanofluidic devices with local charge inversion. Journal of the American Chemical Society. 2009; 131(14):5194-202. http://dx.doi.org/10.1021/ja808717u1931749010.1021/ja808717u
  21. Clapham DE, Runnels LW, Strübing C. The TRP ion channel family. Nature Reviews Neuroscience. 2001; 2(6):387-96. http://dx.doi.org/10.1038/350775441138947210.1038/35077544
  22. von Kitzing E, Soumpasis DM. Electrostatics of a simple membrane model using Green's functions formalism. Biophysical Journal. 1996; 71(2): 795-810. http://dx.doi.org/10.1016/S0006-3495(96)79281-0884221810.1016/S0006-3495(96)79281-0
  23. Wijesinghe R, Coorey N, Kuyucak S. Charge state of the fast gate in chloride channels: Insights from electrostatic calculations in a schematic model. The Journal of Chemical Physics. 2007; 127:195102. http://dx.doi.org/10.1063/1.280441910.1063/1.2804419
  24. Chang HC, Yossifon G. Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics. 2009; 3:0120011--15. http://dx.doi.org/10.1063/1.305604519693382
  25. Cervera J, Schiedt B, Neumann R, Mafé S, Ramírez P. Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics. 2006; 124:104706-1--9. http://dx.doi.org/10.1063/1.217979716542096
  26. Cruz-Chu ER, Aksimentiev A, Schulten K. Ionic current rectification through silica nanopores. The Journal of Physical Chemistry C. 2009; 113(5):1850-62. http://dx.doi.org/10.1021/jp804724p10.1021/jp804724p
  27. Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH. Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochemical and Biophysical Research Communications. 2009; 385(2):181-6. http://dx.doi.org/10.1016/j.bbrc.2009.05.03510.1016/j.bbrc.2009.05.035
  28. Kosinska I. How the asymmetry of internal potential influences the shape of IV characteristic of nanochannels. The Journal of Chemical Physics. 2006; 124:244707. http://dx.doi.org/10.1063/1.221239410.1063/1.2212394
  29. Kosinska I, Goychuk I, Kostur M, Schmid G, Hänggi P. Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E. 2008; 77(3):031131. http://dx.doi.org/10.1103/PhysRevE.77.03113110.1103/PhysRevE.77.031131
  30. Grimnes S, Martinsen ØG. Bioimpedance and bioelectricity basics: Academic Press 2008.
  31. van Boxtel A. Skin resistance during square-wave electrical pulses of 1 to 10 mA. Medical and Biological Engineering and Computing. 1977; 15(6):679-87. http://dx.doi.org/10.1007/BF0245792710.1007/BF02457927
  32. Yamamoto T, Yamamoto Y. Non-linear electrical properties of skin in the low frequency range. Medical and Biological Engineering and Computing. 1981; 19(3):302-10. http://dx.doi.org/10.1007/BF0244254910.1007/BF02442549
  33. Grimnes S. Skin impedance and electro-osmosis in the human epidermis. Medical and Biological Engineering and Computing. 1983; 21(6):739-49. http://dx.doi.org/10.1007/BF0246403710.1007/BF02464037
  34. Lochner GP. The voltage-current characteristic of the human skin. Pretoria, South Africa: University of Pretoria; 2003.
  35. Bîrlea N, Bîrlea S, Tosa V. The skin's electrical asymmetry. Journal of Physics: Conference Series. 2009; 182(1):012020. http://dx.doi.org/10.1088/1742-6596/182/1/012020
  36. Chizmadzhev YA, Indenbom AV, Kuzmin PI, Galichenko SV, Weaver JC, Potts RO. Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophysical Journal. 1998; 74(2):843-56. http://dx.doi.org/10.1016/S0006-3495(98)74008-1953369610.1016/S0006-3495(98)74008-1
  37. Li SK, Ghanem AH, Peck KD, Higuchi WI. Pore induction in human epidermal membrane during low to moderate voltage iontophoresis: A study using AC iontophoresis. Journal of Pharmaceutical Sciences. 1999; 88(4):419-27. http://dx.doi.org/10.1021/js980331y10.1021/js980331y10187752
  38. Xu Q, Kochambilli RP, Song Y, Hao J, Higuchi WI, Li SK. Effects of alternating current frequency and permeation enhancers upon human epidermal membrane. International Journal of Pharmaceutics. 2009; 372(1-2):24-32. http://dx.doi.org/10.1016/j.ijpharm.2008.12.03610.1016/j.ijpharm.2008.12.03619166921
DOI: https://doi.org/10.5617/jeb.296 | Journal eISSN: 1891-5469
Language: English
Page range: 36 - 41
Submitted on: Mar 10, 2012
Published on: Aug 31, 2012
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2012 Nicolae Marius Bîrlea, Sînziana Iulia Bîrlea, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.