References
- T. Krouskop, T. Wheeler, and F. Kallel, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20, no. 4, pp. 260–274, 1998. http://dx.doi.org/10.1177/01617346980200040310.1177/016173469802000403
- J. J. O'Hagan and A. Samani, "Measurement of the hyperelastic properties of tissue slices with tumour inclusion," Phys. Med. Biol., vol. 53, no. 24, pp. 7087–106, 2008. http://dx.doi.org/10.1088/0031-9155/53/24/00610.1088/0031-9155/53/24/006
- P. Wellman and R. Howe, "Breast tissue stiffness in compression is correlated to histological diagnosis," Harvard BioRobotics, pp. 1–15, 1999. http://www.biorobotics.harvard.edu/pubs/1999/mechprops.pdf
- J. Jossinet, "The impedivity of freshly excised human breast tissue," Physiol. Meas., vol. 19, no. 1, pp. 61–75, 1998. http://dx.doi.org/10.1088/0967-3334/19/1/00610.1088/0967-3334/19/1/006
- F. Kallel and J. Ophir, "Tissue mechanical attributes imaging: principles and methods," in Computer-Based Medical Systems. CBMS 2000, pp. 147–159, 2000.
- J. Bercoff, S. Chaffai, and M. Tanter, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol., vol. 29, no. 10, pp. 1387–1396, 2003http://dx.doi.org/10.1016/S0301-5629(03)00978-510.1016/S0301-5629(03)00978-5
- A. B. Nover, S. Jagtap, W. Anjum, H. Yegingil, W. Y. Shih, W.-H. Shih, and A. D. Brooks, "Modern breast cancer detection: a technological review," Int. J. Biomed. Imaging, vol. 2009, p. 902326, Jan. 2009. http://dx.doi.org/10.1155/2009/902326
- Y. C. Fung, Biomechanics: Mechanical Properties of living tissues. New York: New York: Springer-Verlag, 1993. http://dx.doi.org/10.1007/978-1-4757-2257-4
- [9] A. A. Fischer, "Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold," Pain, vol. 30, pp. 115–126, 1987. http://dx.doi.org/10.1016/0304-3959(87)90089-310.1016/0304-3959(87)90089-3
- B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, "Elastography of breast lesions: initial clinical results," Radiology, vol. 202, pp. 79–86, 1997. http://dx.doi.org/10.1148/radiology.202.1.898819510.1148/radiology.202.1.8988195
- T. L. Chenevert, A. R. Skovoroda, M. O'Donnell, and S. Y. Emelianov, "Elasticity reconstructive imaging by means of stimulated echo MRI," Magn. Reson. Med., vol. 39, pp. 482– 490, 1998. http://dx.doi.org/10.1002/mrm.191039031910.1002/mrm.1910390319
- W. C. Hayes, L. M. Keer, G. Herrmann, and L. F. Mockros, "A mathematical analysis for indentation tests of articular cartilage," J. Biomech., vol. 5, pp. 541–551, 1972. http://dx.doi.org/10.1016/0021-9290(72)90010-310.1016/0021-9290(72)90010-3
- T. A. Krouskop, T. M. Wheeler, and F. Kallel, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20, no. 4, pp. 260–274, 1998. http://dx.doi.org/10.1177/01617346980200040310.1177/016173469802000403
- A. P. Sarvazyan, A. R. Skovoroda, and Y. P. Pyt'ev, "Mechanical introscopy-a new modality of medical imaging for detection of breast and prostate cancer," Proc. Eighth IEEE Symp. Comput. Med. Syst., pp. 4-5, 1995. http://dx.doi.org/10.1109/cbms.1995.465455
- M. Zhang, Y. P. Zheng, and A. F. T. Mak, "Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation," Med. Eng. Phys., vol. 19, no. 6, pp. 512–517, 1997. http://dx.doi.org/10.1016/S1350-4533(97)00017-910.1016/S1350-4533(97)00017-9
- Y. C. Fung, Biomechanics: Mechanical Properties of living tissues. New York: Springer-Verlag, 1993. http://dx.doi.org/10.1007/978-1-4757-2257-4
- S. Laufer, A. Ivorra, V. E. Reuter, B. Rubinsky, and S. B. Solomon, "Electrical impedance characterization of normal and cancerous human hepatic tissue," Physiol. Meas., vol. 31, pp. 995–1009, 2010. http://dx.doi.org/10.1088/0967-3334/31/7/00910.1088/0967-3334/31/7/009
- T. Morimoto, S. Kimura, Y. Konishi, K. Komaki, T. Uyama, Y. Monden, D. Y. Kinouchi, and D. T. Iritani, "A Study of the Electrical Bio-impedance of Tumors," J. Invest. Surg., vol. 6, pp. 25-32, 1993. http://dx.doi.org/10.3109/0894193930914118910.3109/08941939309141189
- J. Jossinet, "Variability of impedivity in normal and pathological breast tissue," Med. Biol. Eng. Comput., vol. 34, pp. 346–350, 1996. http://dx.doi.org/10.1007/BF0252000210.1007/BF02520002
- A. Keshtkar, A. Keshtkar, and R. H. Smallwood, "Electrical impedance spectroscopy and the diagnosis of bladder pathology," Physiol. Meas., vol. 27, pp. 585–596, 2006. http://dx.doi.org/10.1088/0967-3334/27/7/00310.1088/0967-3334/27/7/003
- B. H. Brown, J. Tidy, K. Boston, A. D. Blackett, and F. Sharp, "Tetrapolar measurement of cervical tissue structure using impedance spectroscopy," Proc. 20th Annu. Int. Conf. IEEE EMBC, vol. 6, pp. 2886-2889, 1998. http://dx.doi.org/10.1109/iembs.1998.746089
- C. A. Gonzalez-Correa, "Electrical bioimpedance readings increase with higher pressure applied to the measuring probe," Physiol. Meas., vol. 26, no. 2, pp. 39–47, 2005. http://dx.doi.org/10.1088/0967-3334/26/2/00410.1088/0967-3334/26/2/004
- B. S. Kim, D. Isaacson, H. Xia, T.-J. Kao, J. C. Newell, and G. J. Saulnier, "A method for analyzing electrical impedance spectroscopy data from breast cancer patients," Physiol. Meas., vol. 28, pp. S237–S246, 2007. http://dx.doi.org/10.1088/0967-3334/28/7/S1710.1088/0967-3334/28/7/S17
- K. S. Cole, "Permeability and Impermeability of cell membranes for ions," Cold Spring Harb. Symp. Quant. Biol., vol. 8, pp. 110-122, 1940. http://dx.doi.org/10.1101/SQB.1940.008.01.01310.1101/SQB.1940.008.01.013
- R. Dodde, J. Bull, and A. Shih, "Bioimpedance of soft tissue under compression," Physiol. Meas., vol. 33, pp. 1095–1109, 2012. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/1095
- C. Gonzalez-Correa, "Electrical bioimpedance readings increase with higher pressure applied to the measuring probe," Physiol. Meas., vol. 26, no. 2, pp. 39–47, 2005. http://dx.doi.org/10.1088/0967-3334/26/2/00410.1088/0967-3334/26/2/004
- B. Belmont, R. Dodde, and A. Shih, "Impedance of tissue-mimicking phantom material under compression," J. Electr. Bioimpedance, vol. 4, pp. 2–12, 2013. http://dx.doi.org/10.5617/jeb.443
- J. Jossinet, C. Trillaud, and S. Chesnais, "Impedance changes in liver tissue exposed in vitro to high-energy ultrasound," Physiol. Meas., vol. 26, pp. S49–S58, 2005. http://dx.doi.org/10.1088/0967-3334/26/2/00510.1088/0967-3334/26/2/005
- R. Liu, X. Dong, F. Fu, F. You, and X. Shi, "Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model," Physiol. Meas., vol. 28, no. 7, pp. 85– 100, 2007. http://dx.doi.org/10.1088/0967-3334/28/7/S07
- K. S. Cole, "Electrical impedance of suspensions of spheres," J. Gen. Physiol., vol. 12, no. 1, pp. 29–36, 1928. http://dx.doi.org/10.1085/jgp.12.1.2910.1085/jgp.12.1.29
- K. S. Cole and R. H. Cole, "Electrical impedance of arbacia eggs," J. Gen. Physiol., vol. 19, no. 4, pp. 625–632, 1936. http://dx.doi.org/10.1085/jgp.19.4.62510.1085/jgp.19.4.625
- F. Golnaraghi and P. K. Grewal, "Pilot study: electrical impedance based tissue classification using support vector machine classifier," IET Sci. Meas. Technol., vol. 8, pp. 579-587, 2014. http://dx.doi.org/10.1049/iet-smt.2013.008710.1049/iet-smt.2013.0087
- O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics. London: Academic Press, 2011.
- P. K. Grewal, M. Shokoufi, J. Liu, K. Kalpagam, and K. S. Kohli, "Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging," J. Electr. Bioimpedance, vol. 5, no. 1, pp. 34–39, 2014. http://dx.doi.org/10.5617/jeb.781
- B. Rigaud, L. Hamzaoui, M. R. Frikha, N. Chauveau, and J.-P. Morucci, "In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range," Physiol. Meas., vol. 16, no. 3A, pp. A15– A28, 1995. http://dx.doi.org/10.1088/0967-3334/16/3A/002
- R. Sinkus, J. Bercoff, M. Tanter, J.-L. Gennisson, C. El-Khoury, V. Servois, A. Tardivon, and M. Fink, "Nonlinear viscoelastic properties of tissue assessed by ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 11, pp. 2009–2018, 2006. http://dx.doi.org/10.1109/TUFFC.2006.14110.1109/TUFFC.2006.141
- S. Maclean, "Brain tissue: Analysis of mechanical properties," URL: http://hdl.handle.net/1811/44968 Ohio State University, 2010.
- K. K. Darvish and J. R. Crandall, "Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue," Med. Eng. Phys., vol. 23, no. 9, pp. 633–45, 2001. http://dx.doi.org/10.1016/S1350-4533(01)00101-110.1016/S1350-4533(01)00101-1
- C. J. Sparrey, "The role of constituent materials in spinal cord biomechanics," PhD thesis, University of California, 2008.
- T. Kaster, I. Sack, and a Samani, "Measurement of the hyperelastic properties of ex vivo brain tissue slices," J. Biomech., vol. 44, no. 6, pp. 1158–63, 2011. http://dx.doi.org/10.1016/j.jbiomech.2011.01.01910.1016/j.jbiomech.2011.01.019
- J. J. O'Hagan and A. Samani, "Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.," Phys. Med. Biol., vol. 54, no. 8, pp. 2557–69, 2009. http://dx.doi.org/10.1088/0031-9155/54/8/02010.1088/0031-9155/54/8/020
- E. Chen, J. Novakofski, K. Jenkins, and W. Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 1, pp. 191–194, 1996. http://dx.doi.org/10.1109/58.48447810.1109/58.484478
- C. U. Devi, R. S. Bharat Chandran, R. M. Vasu, and A. K. Sood, "Measurement of visco-elastic properties of breast-tissue mimicking materials using diffusing wave spectroscopy," J. Biomed. Opt., vol. 12, no. 3, p. 034035, 2007. http://dx.doi.org/10.1117/1.2743081
- Y. Yang, W. Ni, and Q. Sun, "Improved Cole parameter extraction based on the least absolute deviation method," Physiol. Meas., vol. 34, no. 10, pp. 1239–1252, 2013. http://dx.doi.org/10.1088/0967-3334/34/10/123910.1088/0967-3334/34/10/1239
- K. Chen, Z. Ying, H. Zhang, and L. Zhao, "Analysis of least absolute deviation," Biometrika, vol. 95, no. 1, pp. 107–122, 2008. http://dx.doi.org/10.1093/biomet/asm08210.1093/biomet/asm082
- W. Hayes, L. Keer, G. Herrmann, and L. Mockros, "Mathematical analysis for indentation tests of articular cartilage," J. Biomech., vol. 5, no. 5, pp. 541–551, 1972. http://dx.doi.org/10.1016/0021-9290(72)90010-310.1016/0021-9290(72)90010-3
- I. A. N. N. Sneddon, "The relation between load and penetration in the axysmmetric Boussinesq problem for a punch of arbitrary profile," Int. J. Eng. Sci., vol. 3, no. 638, pp. 47–57, 1965. http://dx.doi.org/10.1016/0020-7225(65)90019-410.1016/0020-7225(65)90019-4
- M. Zhang, Y. P. Zheng, and A. F. T. Mak, "Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation," Med. Eng. Phys., vol. 19, no. 6, pp. 512–517, 1997. http://dx.doi.org/10.1016/S1350-4533(97)00017-910.1016/S1350-4533(97)00017-9
- E. McAdams and J. Jossinet, "Tissue impedance: a historical overview," Physiol. Meas., vol. 16, pp. A1–A13, 1995. http://dx.doi.org/10.1088/0967-3334/16/3A/00110.1088/0967-3334/16/3A/001
- Y. Konishi, T. Morimoto, Y. Kinouchi, T. Iritani, and Y. Monden, "Electrical properties of extracted rat liver tissue," Res. Exp. Med., vol. 195, pp. 183–192, 1995. http://dx.doi.org/10.1007/BF0257678710.1007/BF02576787
- D. Haemmerich, R. Ozkan, S. Tungjitkusolmun, J. Z. Tsai, D. M. Mahvi, S. T. Staelin, and J. G. Webster, "Changes in electrical resistivity of swine liver after occlusion and post mortem," Med. Biol. Eng. Comput., vol. 40, no. 1, pp. 29–33, 2002. http://dx.doi.org/10.1007/BF0234769210.1007/BF02347692
- D. Miklavacic, N. Pavselj, and F. X. Hart, Wiley encyclopedia of biomedical engineering. 2006.
- J. L. Farber, K. R. Chien, and S. J. Mittnacht, "Myocardial Ischemia: the Pathogenesis of irreversible cell Injury in Ischemia," Am. J. Pathol., vol. 102, pp. 271–281, 1981.
- Z. Demou, "Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential," Ann. Biomed. Eng., vol. 38, no. 11, pp. 3509–3520, 2010. http://dx.doi.org/10.1007/s10439-010-0097-010.1007/s10439-010-0097-0
- H. Schwan and K. Foster, "RF-field interactions with biological systems: electrical properties and biophysical mechanisms," Proc. IEEE, vol. 68, no. 1, pp. 104–113, 1980. http://dx.doi.org/10.1109/PROC.1980.1158910.1109/PROC.1980.11589