Have a personal or library account? Click to login
Compression-dependency of soft tissue bioimpedance for in-vivo and in-vitro tissue testing Cover

Compression-dependency of soft tissue bioimpedance for in-vivo and in-vitro tissue testing

Open Access
|Dec 2015

References

  1. T. Krouskop, T. Wheeler, and F. Kallel, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20, no. 4, pp. 260–274, 1998. http://dx.doi.org/10.1177/01617346980200040310.1177/016173469802000403
  2. J. J. O'Hagan and A. Samani, "Measurement of the hyperelastic properties of tissue slices with tumour inclusion," Phys. Med. Biol., vol. 53, no. 24, pp. 7087–106, 2008. http://dx.doi.org/10.1088/0031-9155/53/24/00610.1088/0031-9155/53/24/006
  3. P. Wellman and R. Howe, "Breast tissue stiffness in compression is correlated to histological diagnosis," Harvard BioRobotics, pp. 1–15, 1999. http://www.biorobotics.harvard.edu/pubs/1999/mechprops.pdf
  4. J. Jossinet, "The impedivity of freshly excised human breast tissue," Physiol. Meas., vol. 19, no. 1, pp. 61–75, 1998. http://dx.doi.org/10.1088/0967-3334/19/1/00610.1088/0967-3334/19/1/006
  5. F. Kallel and J. Ophir, "Tissue mechanical attributes imaging: principles and methods," in Computer-Based Medical Systems. CBMS 2000, pp. 147–159, 2000.
  6. J. Bercoff, S. Chaffai, and M. Tanter, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol., vol. 29, no. 10, pp. 1387–1396, 2003http://dx.doi.org/10.1016/S0301-5629(03)00978-510.1016/S0301-5629(03)00978-5
  7. A. B. Nover, S. Jagtap, W. Anjum, H. Yegingil, W. Y. Shih, W.-H. Shih, and A. D. Brooks, "Modern breast cancer detection: a technological review," Int. J. Biomed. Imaging, vol. 2009, p. 902326, Jan. 2009. http://dx.doi.org/10.1155/2009/902326
  8. Y. C. Fung, Biomechanics: Mechanical Properties of living tissues. New York: New York: Springer-Verlag, 1993. http://dx.doi.org/10.1007/978-1-4757-2257-4
  9. [9] A. A. Fischer, "Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold," Pain, vol. 30, pp. 115–126, 1987. http://dx.doi.org/10.1016/0304-3959(87)90089-310.1016/0304-3959(87)90089-3
  10. B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, "Elastography of breast lesions: initial clinical results," Radiology, vol. 202, pp. 79–86, 1997. http://dx.doi.org/10.1148/radiology.202.1.898819510.1148/radiology.202.1.8988195
  11. T. L. Chenevert, A. R. Skovoroda, M. O'Donnell, and S. Y. Emelianov, "Elasticity reconstructive imaging by means of stimulated echo MRI," Magn. Reson. Med., vol. 39, pp. 482– 490, 1998. http://dx.doi.org/10.1002/mrm.191039031910.1002/mrm.1910390319
  12. W. C. Hayes, L. M. Keer, G. Herrmann, and L. F. Mockros, "A mathematical analysis for indentation tests of articular cartilage," J. Biomech., vol. 5, pp. 541–551, 1972. http://dx.doi.org/10.1016/0021-9290(72)90010-310.1016/0021-9290(72)90010-3
  13. T. A. Krouskop, T. M. Wheeler, and F. Kallel, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20, no. 4, pp. 260–274, 1998. http://dx.doi.org/10.1177/01617346980200040310.1177/016173469802000403
  14. A. P. Sarvazyan, A. R. Skovoroda, and Y. P. Pyt'ev, "Mechanical introscopy-a new modality of medical imaging for detection of breast and prostate cancer," Proc. Eighth IEEE Symp. Comput. Med. Syst., pp. 4-5, 1995. http://dx.doi.org/10.1109/cbms.1995.465455
  15. M. Zhang, Y. P. Zheng, and A. F. T. Mak, "Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation," Med. Eng. Phys., vol. 19, no. 6, pp. 512–517, 1997. http://dx.doi.org/10.1016/S1350-4533(97)00017-910.1016/S1350-4533(97)00017-9
  16. Y. C. Fung, Biomechanics: Mechanical Properties of living tissues. New York: Springer-Verlag, 1993. http://dx.doi.org/10.1007/978-1-4757-2257-4
  17. S. Laufer, A. Ivorra, V. E. Reuter, B. Rubinsky, and S. B. Solomon, "Electrical impedance characterization of normal and cancerous human hepatic tissue," Physiol. Meas., vol. 31, pp. 995–1009, 2010. http://dx.doi.org/10.1088/0967-3334/31/7/00910.1088/0967-3334/31/7/009
  18. T. Morimoto, S. Kimura, Y. Konishi, K. Komaki, T. Uyama, Y. Monden, D. Y. Kinouchi, and D. T. Iritani, "A Study of the Electrical Bio-impedance of Tumors," J. Invest. Surg., vol. 6, pp. 25-32, 1993. http://dx.doi.org/10.3109/0894193930914118910.3109/08941939309141189
  19. J. Jossinet, "Variability of impedivity in normal and pathological breast tissue," Med. Biol. Eng. Comput., vol. 34, pp. 346–350, 1996. http://dx.doi.org/10.1007/BF0252000210.1007/BF02520002
  20. A. Keshtkar, A. Keshtkar, and R. H. Smallwood, "Electrical impedance spectroscopy and the diagnosis of bladder pathology," Physiol. Meas., vol. 27, pp. 585–596, 2006. http://dx.doi.org/10.1088/0967-3334/27/7/00310.1088/0967-3334/27/7/003
  21. B. H. Brown, J. Tidy, K. Boston, A. D. Blackett, and F. Sharp, "Tetrapolar measurement of cervical tissue structure using impedance spectroscopy," Proc. 20th Annu. Int. Conf. IEEE EMBC, vol. 6, pp. 2886-2889, 1998. http://dx.doi.org/10.1109/iembs.1998.746089
  22. C. A. Gonzalez-Correa, "Electrical bioimpedance readings increase with higher pressure applied to the measuring probe," Physiol. Meas., vol. 26, no. 2, pp. 39–47, 2005. http://dx.doi.org/10.1088/0967-3334/26/2/00410.1088/0967-3334/26/2/004
  23. B. S. Kim, D. Isaacson, H. Xia, T.-J. Kao, J. C. Newell, and G. J. Saulnier, "A method for analyzing electrical impedance spectroscopy data from breast cancer patients," Physiol. Meas., vol. 28, pp. S237–S246, 2007. http://dx.doi.org/10.1088/0967-3334/28/7/S1710.1088/0967-3334/28/7/S17
  24. K. S. Cole, "Permeability and Impermeability of cell membranes for ions," Cold Spring Harb. Symp. Quant. Biol., vol. 8, pp. 110-122, 1940. http://dx.doi.org/10.1101/SQB.1940.008.01.01310.1101/SQB.1940.008.01.013
  25. R. Dodde, J. Bull, and A. Shih, "Bioimpedance of soft tissue under compression," Physiol. Meas., vol. 33, pp. 1095–1109, 2012. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/1095
  26. C. Gonzalez-Correa, "Electrical bioimpedance readings increase with higher pressure applied to the measuring probe," Physiol. Meas., vol. 26, no. 2, pp. 39–47, 2005. http://dx.doi.org/10.1088/0967-3334/26/2/00410.1088/0967-3334/26/2/004
  27. B. Belmont, R. Dodde, and A. Shih, "Impedance of tissue-mimicking phantom material under compression," J. Electr. Bioimpedance, vol. 4, pp. 2–12, 2013. http://dx.doi.org/10.5617/jeb.443
  28. J. Jossinet, C. Trillaud, and S. Chesnais, "Impedance changes in liver tissue exposed in vitro to high-energy ultrasound," Physiol. Meas., vol. 26, pp. S49–S58, 2005. http://dx.doi.org/10.1088/0967-3334/26/2/00510.1088/0967-3334/26/2/005
  29. R. Liu, X. Dong, F. Fu, F. You, and X. Shi, "Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model," Physiol. Meas., vol. 28, no. 7, pp. 85– 100, 2007. http://dx.doi.org/10.1088/0967-3334/28/7/S07
  30. K. S. Cole, "Electrical impedance of suspensions of spheres," J. Gen. Physiol., vol. 12, no. 1, pp. 29–36, 1928. http://dx.doi.org/10.1085/jgp.12.1.2910.1085/jgp.12.1.29
  31. K. S. Cole and R. H. Cole, "Electrical impedance of arbacia eggs," J. Gen. Physiol., vol. 19, no. 4, pp. 625–632, 1936. http://dx.doi.org/10.1085/jgp.19.4.62510.1085/jgp.19.4.625
  32. F. Golnaraghi and P. K. Grewal, "Pilot study: electrical impedance based tissue classification using support vector machine classifier," IET Sci. Meas. Technol., vol. 8, pp. 579-587, 2014. http://dx.doi.org/10.1049/iet-smt.2013.008710.1049/iet-smt.2013.0087
  33. O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics. London: Academic Press, 2011.
  34. P. K. Grewal, M. Shokoufi, J. Liu, K. Kalpagam, and K. S. Kohli, "Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging," J. Electr. Bioimpedance, vol. 5, no. 1, pp. 34–39, 2014. http://dx.doi.org/10.5617/jeb.781
  35. B. Rigaud, L. Hamzaoui, M. R. Frikha, N. Chauveau, and J.-P. Morucci, "In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range," Physiol. Meas., vol. 16, no. 3A, pp. A15– A28, 1995. http://dx.doi.org/10.1088/0967-3334/16/3A/002
  36. R. Sinkus, J. Bercoff, M. Tanter, J.-L. Gennisson, C. El-Khoury, V. Servois, A. Tardivon, and M. Fink, "Nonlinear viscoelastic properties of tissue assessed by ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 11, pp. 2009–2018, 2006. http://dx.doi.org/10.1109/TUFFC.2006.14110.1109/TUFFC.2006.141
  37. S. Maclean, "Brain tissue: Analysis of mechanical properties," URL: http://hdl.handle.net/1811/44968 Ohio State University, 2010.
  38. K. K. Darvish and J. R. Crandall, "Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue," Med. Eng. Phys., vol. 23, no. 9, pp. 633–45, 2001. http://dx.doi.org/10.1016/S1350-4533(01)00101-110.1016/S1350-4533(01)00101-1
  39. C. J. Sparrey, "The role of constituent materials in spinal cord biomechanics," PhD thesis, University of California, 2008.
  40. T. Kaster, I. Sack, and a Samani, "Measurement of the hyperelastic properties of ex vivo brain tissue slices," J. Biomech., vol. 44, no. 6, pp. 1158–63, 2011. http://dx.doi.org/10.1016/j.jbiomech.2011.01.01910.1016/j.jbiomech.2011.01.019
  41. J. J. O'Hagan and A. Samani, "Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.," Phys. Med. Biol., vol. 54, no. 8, pp. 2557–69, 2009. http://dx.doi.org/10.1088/0031-9155/54/8/02010.1088/0031-9155/54/8/020
  42. E. Chen, J. Novakofski, K. Jenkins, and W. Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 1, pp. 191–194, 1996. http://dx.doi.org/10.1109/58.48447810.1109/58.484478
  43. C. U. Devi, R. S. Bharat Chandran, R. M. Vasu, and A. K. Sood, "Measurement of visco-elastic properties of breast-tissue mimicking materials using diffusing wave spectroscopy," J. Biomed. Opt., vol. 12, no. 3, p. 034035, 2007. http://dx.doi.org/10.1117/1.2743081
  44. Y. Yang, W. Ni, and Q. Sun, "Improved Cole parameter extraction based on the least absolute deviation method," Physiol. Meas., vol. 34, no. 10, pp. 1239–1252, 2013. http://dx.doi.org/10.1088/0967-3334/34/10/123910.1088/0967-3334/34/10/1239
  45. K. Chen, Z. Ying, H. Zhang, and L. Zhao, "Analysis of least absolute deviation," Biometrika, vol. 95, no. 1, pp. 107–122, 2008. http://dx.doi.org/10.1093/biomet/asm08210.1093/biomet/asm082
  46. W. Hayes, L. Keer, G. Herrmann, and L. Mockros, "Mathematical analysis for indentation tests of articular cartilage," J. Biomech., vol. 5, no. 5, pp. 541–551, 1972. http://dx.doi.org/10.1016/0021-9290(72)90010-310.1016/0021-9290(72)90010-3
  47. I. A. N. N. Sneddon, "The relation between load and penetration in the axysmmetric Boussinesq problem for a punch of arbitrary profile," Int. J. Eng. Sci., vol. 3, no. 638, pp. 47–57, 1965. http://dx.doi.org/10.1016/0020-7225(65)90019-410.1016/0020-7225(65)90019-4
  48. M. Zhang, Y. P. Zheng, and A. F. T. Mak, "Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation," Med. Eng. Phys., vol. 19, no. 6, pp. 512–517, 1997. http://dx.doi.org/10.1016/S1350-4533(97)00017-910.1016/S1350-4533(97)00017-9
  49. E. McAdams and J. Jossinet, "Tissue impedance: a historical overview," Physiol. Meas., vol. 16, pp. A1–A13, 1995. http://dx.doi.org/10.1088/0967-3334/16/3A/00110.1088/0967-3334/16/3A/001
  50. Y. Konishi, T. Morimoto, Y. Kinouchi, T. Iritani, and Y. Monden, "Electrical properties of extracted rat liver tissue," Res. Exp. Med., vol. 195, pp. 183–192, 1995. http://dx.doi.org/10.1007/BF0257678710.1007/BF02576787
  51. D. Haemmerich, R. Ozkan, S. Tungjitkusolmun, J. Z. Tsai, D. M. Mahvi, S. T. Staelin, and J. G. Webster, "Changes in electrical resistivity of swine liver after occlusion and post mortem," Med. Biol. Eng. Comput., vol. 40, no. 1, pp. 29–33, 2002. http://dx.doi.org/10.1007/BF0234769210.1007/BF02347692
  52. D. Miklavacic, N. Pavselj, and F. X. Hart, Wiley encyclopedia of biomedical engineering. 2006.
  53. J. L. Farber, K. R. Chien, and S. J. Mittnacht, "Myocardial Ischemia: the Pathogenesis of irreversible cell Injury in Ischemia," Am. J. Pathol., vol. 102, pp. 271–281, 1981.
  54. Z. Demou, "Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential," Ann. Biomed. Eng., vol. 38, no. 11, pp. 3509–3520, 2010. http://dx.doi.org/10.1007/s10439-010-0097-010.1007/s10439-010-0097-0
  55. H. Schwan and K. Foster, "RF-field interactions with biological systems: electrical properties and biophysical mechanisms," Proc. IEEE, vol. 68, no. 1, pp. 104–113, 1980. http://dx.doi.org/10.1109/PROC.1980.1158910.1109/PROC.1980.11589
DOI: https://doi.org/10.5617/jeb.1489 | Journal eISSN: 1891-5469
Language: English
Page range: 22 - 32
Submitted on: Mar 31, 2015
Published on: Dec 18, 2015
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Sepideh M. Moqadam, Parvind Grewal, Majid Shokoufi, Farid Golnaraghi, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.