Have a personal or library account? Click to login

Potencjalne kliniczne zastosowanie cząsteczek miRNA w diagnostyce raka prostaty

Open Access
|Jun 2021

References

  1. Aghdam S.G., Ebrazeh M., Hemmatzadeh M., Seyfizadeh N., Shabgah A.G., Azizi G., Ebrahimi N., Babaie F., Mohammadi H.: The role of microRNAs in prostate cancer migration, invasion and metastasis. J. Cell. Physiol., 2019; 234: 9927–9942
  2. Alford A.V., Brito J.M., Yadav K.K., Yadav S.S., Tewari A.K., Renzulli J.: The use of biomarkers in prostate cancer screening and treatment. Rev. Urol., 2017; 19: 221–234
  3. Bayraktar R., Van Roosbroeck K., Calin G.A.: Cell-to-cell communication: MicroRNAs as hormones. Mol. Oncol., 2017; 11: 1673–1686
  4. Boerrigter E., Groen L.N., Van Erp N.P., Verhaegh G.W., Schalken J.A.: Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Rev. Mol. Diagn., 2020; 20: 219–230
  5. Bonci D., Coppola V., Musumeci M., Addario A., Giuffrida R., Memeo L., D’Urso L., Pagliuca A., Biffoni M., Labbaye C., Bartucci M., Muto G., Peschle C., De Maria R.: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med., 2008; 14: 1271–1277
  6. Bonci D., Coppola V., Patrizii M., Addario A., Cannistraci A., Francescangeli F., Pecci R., Muto G., Collura D., Bedini R., Zeuner A., Valtieri M., Sentinelli S., Benassi M.S., Gallucci M. i wsp.: A microRNA code for prostate cancer metastasis. Oncogene, 2016; 35: 1180–1192
  7. Bucay N., Bhagirath D., Sekhon K., Yang T., Fukuhara S., Majid S., Shahryari V., Tabatabai Z., Greene K.L., Hashimoto Y., Shiina M., Yamamura S., Tanaka Y., Deng G., Dahiya R., Saini S.: A novel micro-RNA regulator of prostate cancer epithelial-mesenchymal transition. Cell Death Differ., 2017; 24: 1263–1274
  8. Chen D.Q., Yu C., Zhang X.F., Liu Z.F., Wang R., Jiang M., Chen H., Yan F., Tao M., Chen L.B., Zhu H., Feng J.F.: HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant prostate cancer by targeting NEDD9. Ther. Adv. Med. Oncol., 2018; 10: 1758835918783132
  9. Chen L., Cao H., Feng Y.: MiR-199a suppresses prostate cancer paclitaxel resistance by targeting YES1. World J. Urol., 2018; 36: 357–365
  10. Cochetti G., Rossi de Vermandois J.A., Maulà V., Giulietti M., Cecati M., Del Zingaro M., Cagnani R., Suvieri C., Paladini A., Mearini E.: Role of miRNAs in prostate cancer: Do we really know everything? Urol. Oncol., 2020; 38: 623–635
  11. Colden M., Dar A.A., Saini S., Dahiya P.V., Shahryari V., Yamamura S., Tanaka Y., Stein G., Dahiya R., Majid S.: MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis., 2018; 8: e2572
  12. Dong Q., Meng P., Wang T., Qin W., Qin W., Wang F., Yuan J., Chen Z., Yang A., Wang H.: MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One, 2010; 5: e10147
  13. Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F.: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer., 2019; 144: 1941–1953
  14. Filella X., Foj L.: miRNAs as novel biomarkers in the management of prostate cancer. Clin. Chem. Lab. Med., 2017; 55: 715–736
  15. Fu X., Meng Z., Liang W., Tian Y., Wang X., Han W., Lou G., Wang X., Lou F., Yen Y., Yu H., Jove R., Huang W.: miR-26 enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene, 2014; 33: 4296–4306
  16. Galardi S., Mercatelli N., Giorda E., Massalini S., Frajese G.V., Ciafrè S.A., Farace M.G.: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem., 2007; 282: 23716–23724
  17. Goto Y., Kojima S., Nishikawa R., Enokida H., Chiyomaru T., Kinoshita T., Nakagawa M., Naya Y., Ichikawa T., Seki N.: The microRNA-23b/27b/24-1 cluster is a disease progression marker and tumor suppressor in prostate cancer. Oncotarget, 2014; 5: 7748–7759
  18. Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J.: The miR–200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol., 2008; 10: 593–601
  19. Gu H., Liu M., Ding C., Wang X., Wang R., Wu X., Fan R.: Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med., 2016; 5: 1174–1182
  20. Hao P., Kang B., Yao G., Hao W., Ma F.: MicroRNA-211 suppresses prostate cancer proliferation by targeting SPARC. Oncol. Lett., 2018; 15: 4323–4329
  21. Hsieh I.S., Chang K.C., Tsai Y.T., Ke J.Y., Lu P.J., Lee K.H., Yeh S.D., Hong T.M., Chen Y.L.: MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis, 2013; 34: 530–538
  22. Hu B., Jin X., Wang J.: MicroRNA-212 targets mitogen-activated protein kinase 1 to inhibit proliferation and invasion of prostate cancer cells. Oncol. Res., 2018; 26: 1093–1102
  23. Kojima S., Enokida H., Yoshino H., Itesako T., Chiyomaru T., Kinoshita T., Fuse M., Nishikawa R., Goto Y., Naya Y., Nakagawa M., Seki N.: The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J. Hum. Genet., 2014; 59: 78–87
  24. Lin H.M., Nikolic I., Yang J., Castillo L., Deng N., Chan C.L., Yeung N.K., Dodson E., Elsworth B., Spielman C., Lee B.Y., Boyer Z., Simpson K.L., Daly R.J., Horvath L.G., Swarbrick A.: MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer. Sci. Rep., 2018; 8: 7820
  25. Lin P.C., Chiu Y.L., Banerjee S., Park K., Mosquera J.M., Giannopoulou E., Alves P., Tewari A.K., Gerstein M.B., Beltran H., Melnick A.M., Elemento O., Demichelis F., Rubin M.A.: Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res., 2013; 73: 1232–1244
  26. Liu C., Kelnar K., Liu B., Chen X., Calhoun-Davis T., Li H., Patrawala L., Yan H., Jeter C., Honorio S., Wiggins J.F., Bader A.G., Fagin R., Brown D., Tang D.G.: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011; 17: 211–215
  27. Liu C., Liu R, Zhang D., Deng Q., Liu B., Chao H.P., Rycaj K., Takata Y., Lin K., Lu Y., Zhong Y., Krolewski J., Shen J., Tang D.G.: MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun., 2017; 8: 14270
  28. Liu R.S., Olkhow-Mitsel E., Jeyapala R., Zhao F., Commisso K., Klotz L., Loblaw A., Liu S.K., Vesprini D., Flesher N.E., Bapat B.: Assessment of serum microRNA biomarkers to predict reclassification of prostate cancer in patients on active surveillance. J. Urol., 2018; 199: 1475–1481
  29. Liu Y.N., Yin J.J., Abou-Kheir W., Hynes P.G., Casey O.M., Fang L., Yi M., Stephens R.M., Seng V., Sheppard-Tillman H., Martin P., Kelly K.: Mir-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via slug-independent mechanisms. Oncogene, 2013; 32: 296–306
  30. Loeb S., Catalona W.J.: The prostate health index: A new test for the detection of prostate cancer. Ther. Adv. Urol., 2014; 6: 74–77
  31. Lynch S.M., McKenna M.M., Walsh C.P., McKenna D.J.: miR-24 regulates CDKN1B/p27 expression in prostate cancer. Prostate, 2016; 76: 637–648
  32. Majid S., Dar A.A., Saini S., Shahryari V., Arora S., Zaman M.S., Chang I., Yamamura S., Tanaka Y., Chiyomaru T., Deng G., Dahiya R.: miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin. Cancer Res., 2013; 19: 73–84
  33. Massillo C., Dalton G.N., Farré P.L., De Luca P., De Siervi A.: Implications of microRNA dysregulation in the development of prostate cancer. Reproduction, 2017; 154: R81–R97
  34. Mihelich B.L., Maranville J.C., Nolley R., Peehl D.M., Nonn L.: Elevated serum microRNA levels associate with absence of high-grade prostate cancer in a retrospective cohort. PLoS One, 2015; 10: e0124245
  35. Miller K.D., Nogueira L., Mariotto A.B., Rowland J.H., Yabroff K.R., Alfano C.A., Jemal A., Kramer J.L., Siegel R.L.: Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019; 69: 363–385
  36. Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosowa-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., Lin D.W., Urban N., Drescher C.W., Knudsen B.S., Stirewalt D.L. i wsp.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008; 105: 10513–10518
  37. Ortiz-Quintero B.: Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Prolif., 2016; 49: 281–303
  38. Porkka K.P., Pfeiffer M.J., Waltering K.K, Vessella R.L., Tammela T.L., Visakorpi T.: MicroRNA expression profiling in prostate cancer. Cancer Res., 2007; 67: 6130–6135
  39. Porzycki P., Ciszkowicz E., Semik M., Tyrka M.: Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int. Urol. Nephrol., 2018; 50: 1619–1626
  40. Rajendiran S., Parwani A.V., Hare R.J., Dasgupta S., Roby R.K., Vishwanatha J.K.: MicroRNA–940 suppresses prostate cancer migration and invasion by regulating MEIN1. Mol. Cancer, 2014; 13: 250
  41. Rodríguez M., Bajo-Santos C., Hessvik N.P, Lorenz S., Fromm B., Berge V., Sandvig K., Linȇ A., Llorente A.: Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer., 2017; 16: 156
  42. Ru P., Steele R., Newhall P., Phillips N.J., Toth K., Ray R.B.: miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer Ther., 2012; 11: 1166–1173
  43. Selth L.A., Das R., Townley S.L., Coutinho I., Hanson A.R., Centenera M.M., Stylianou N., Sweeney K., Soekmadji C., Jovanovic L., Nelson C.C., Zoubeidi A., Butler L.M., Goodall G.J., Hollier B.G., Gregory P.A., Tilley W.D.: A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene, 2017; 36: 24–34
  44. Shi X.B., Xue L., Ma A.H., Tepper C.G., Gandour-Edwards R., Kung H.J., de Vere-White R.W.: Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene, 2013; 32: 4130–4138
  45. Shi X.H., Li X., Zhang H., He R.Z., Zhao Y., Zhou M., Pan S.T., Zhao C.L., Feng Y.C., Wang M., Guo X.J., Qin R.Y.: A five microRNA signature for survival prognosis in pancreatic adenocarcinoma based on TCGA data. Sci. Rep., 2018; 8: 7638
  46. Stuopelyte K., Daniunaite K., Bakavicius A., Lazutka J.R., Jankevicius F., Jarmalaite S.: The utility of urine-circulating miRNAs for detection of prostate cancer. Br. J. Cancer, 2016; 115: 707–715
  47. Sun Q., Weng D., Li K., Li S., Bai X., Fang C., Luo D., Wu P., Chen G., Wei J.: MicroRNA-139-5P inhibits human prostate cancer cell proliferation by targeting Notch1. Oncol. Lett., 2018; 16: 793–800
  48. Tinay I., Tan M., Gui B., Werner L., Kibel A.S., Jia L.: Functional roles and potential clinical application of miRNA-345-5p in prostate cancer. Prostate, 2018; 78: 927–937
  49. Tokudome S., Ando R., Koda Y.: Discoveries and application of prostate specific antigen, and some proposals to optimize prostate cancer screening. Cancer Manag. Res., 2016; 8: 45–47
  50. Tomlins S.A., Day J.R., Lonigro R.J., Hovelson D.H., Siddiqui J., Kunju L.P., Dunn R.L., Meyer S., Hodge P., Groskopf J., Wei J.T., Chinnaiyan A.M.: Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol., 2016; 70: 45–53
  51. Van Neste L., Hendriks R.J., Dijkstra S., Trooskens G., Cornel E.B., Jannink S.A., de Jong H., Hessels D., Smit F.P., Melchers W.J., Leyten G.H., de Reijke T.M., Vergunst H., Kil P., Knipscheer B.C. i wsp.: Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur. Urol., 2016; 70: 740–748
  52. Wang M., Yu W., Gao J., Ma W., Frentsch M., Thiel A., Liu M., Rahman N., Qin Z., Li X.: Micro-RNA-487a-3p functions as a new tumor suppressor in prostate cancer by targeting CCND1. J. Cell Physiol., 2020; 235: 1588–1600
  53. Wang W., Liu J., Wu Q.: MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1. Eur. Rev. Med. Pharmacol. Sci., 2016; 20: 92–100
  54. Wei J.T., Feng Z., Partin A.W., Brown E., Thompson I., Sokoll L., Chan D.W., Lotan Y., Kibel A.S., Busby J.E., Bidair M., Lin D.W., Taneja S.S., Viterbo R., Joon A.Y. i wsp.: Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J. Clin. Oncol., 2014; 32: 4066–4073
  55. Williams L.V., Veliceasa D., Vinokour E., Volpert O.V.: miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One, 2013; 8: e83991
  56. Xu L., Zhong J., Guo B., Zhu Q., Liang H., Wen N., Yun W., Zhang L.: miR-96 promotes the growth of prostate carcinoma cells by suppressing MTSS1. Tumour Biol., 2016; 37: 12023–12032
  57. Yang Y., Guo J.X., Shao Z.Q.: miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac. J. Trop. Med., 2017; 10: 87–91
  58. Yao J., Xu C., Fang Z., Li Y., Liu H., Wang Y., Xu C., Sun Y.: Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway. Biochem. Biophys. Res. Commun., 2016; 474: 213–219
  59. Zhang S., Cai J., Xie W., Luo H., Yang F.: miR-202 suppresses prostate cancer growth and metastasis by targeting PIK3CA. Exp. Ther. Med., 2018; 16: 1499–1504
  60. Zhou Y.J., Yang H.Q., Xia W., Cui L., Xu R.F., Lu H., Xue Z., Zhang B., Tian Z.N., Cao Y.J., Xing Z.Y., Yin S., He X.Z.: Down-regulation of miR-605 promotes the proliferation and invasion of prostate cancer cells by up-regulating EN2. Life Sci., 2017; 190: 7–14
  61. Zhu Y., Shao S., Pan H., Cheng Z., Rui X.: MicroRNA-136 inhibits prostate cancer cell proliferation and invasion by directly targeting mitogen-activated protein kinase 4. Mol. Med. Rep., 2018; 17: 4803–4810
Language: English
Page range: 491 - 501
Submitted on: Jul 6, 2020
Accepted on: Feb 1, 2021
Published on: Jun 29, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Paweł Porzycki, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.