Aghdam S.G., Ebrazeh M., Hemmatzadeh M., Seyfizadeh N., Shabgah A.G., Azizi G., Ebrahimi N., Babaie F., Mohammadi H.: The role of microRNAs in prostate cancer migration, invasion and metastasis. J. Cell. Physiol., 2019; 234: 9927–9942
Alford A.V., Brito J.M., Yadav K.K., Yadav S.S., Tewari A.K., Renzulli J.: The use of biomarkers in prostate cancer screening and treatment. Rev. Urol., 2017; 19: 221–234
Bonci D., Coppola V., Musumeci M., Addario A., Giuffrida R., Memeo L., D’Urso L., Pagliuca A., Biffoni M., Labbaye C., Bartucci M., Muto G., Peschle C., De Maria R.: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med., 2008; 14: 1271–1277
Bonci D., Coppola V., Patrizii M., Addario A., Cannistraci A., Francescangeli F., Pecci R., Muto G., Collura D., Bedini R., Zeuner A., Valtieri M., Sentinelli S., Benassi M.S., Gallucci M. i wsp.: A microRNA code for prostate cancer metastasis. Oncogene, 2016; 35: 1180–1192
Bucay N., Bhagirath D., Sekhon K., Yang T., Fukuhara S., Majid S., Shahryari V., Tabatabai Z., Greene K.L., Hashimoto Y., Shiina M., Yamamura S., Tanaka Y., Deng G., Dahiya R., Saini S.: A novel micro-RNA regulator of prostate cancer epithelial-mesenchymal transition. Cell Death Differ., 2017; 24: 1263–1274
Chen D.Q., Yu C., Zhang X.F., Liu Z.F., Wang R., Jiang M., Chen H., Yan F., Tao M., Chen L.B., Zhu H., Feng J.F.: HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant prostate cancer by targeting NEDD9. Ther. Adv. Med. Oncol., 2018; 10: 1758835918783132
Cochetti G., Rossi de Vermandois J.A., Maulà V., Giulietti M., Cecati M., Del Zingaro M., Cagnani R., Suvieri C., Paladini A., Mearini E.: Role of miRNAs in prostate cancer: Do we really know everything? Urol. Oncol., 2020; 38: 623–635
Colden M., Dar A.A., Saini S., Dahiya P.V., Shahryari V., Yamamura S., Tanaka Y., Stein G., Dahiya R., Majid S.: MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis., 2018; 8: e2572
Dong Q., Meng P., Wang T., Qin W., Qin W., Wang F., Yuan J., Chen Z., Yang A., Wang H.: MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One, 2010; 5: e10147
Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Piñeros M., Znaor A., Bray F.: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer., 2019; 144: 1941–1953
Fu X., Meng Z., Liang W., Tian Y., Wang X., Han W., Lou G., Wang X., Lou F., Yen Y., Yu H., Jove R., Huang W.: miR-26 enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene, 2014; 33: 4296–4306
Goto Y., Kojima S., Nishikawa R., Enokida H., Chiyomaru T., Kinoshita T., Nakagawa M., Naya Y., Ichikawa T., Seki N.: The microRNA-23b/27b/24-1 cluster is a disease progression marker and tumor suppressor in prostate cancer. Oncotarget, 2014; 5: 7748–7759
Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J.: The miR–200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol., 2008; 10: 593–601
Gu H., Liu M., Ding C., Wang X., Wang R., Wu X., Fan R.: Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med., 2016; 5: 1174–1182
Hsieh I.S., Chang K.C., Tsai Y.T., Ke J.Y., Lu P.J., Lee K.H., Yeh S.D., Hong T.M., Chen Y.L.: MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis, 2013; 34: 530–538
Hu B., Jin X., Wang J.: MicroRNA-212 targets mitogen-activated protein kinase 1 to inhibit proliferation and invasion of prostate cancer cells. Oncol. Res., 2018; 26: 1093–1102
Kojima S., Enokida H., Yoshino H., Itesako T., Chiyomaru T., Kinoshita T., Fuse M., Nishikawa R., Goto Y., Naya Y., Nakagawa M., Seki N.: The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J. Hum. Genet., 2014; 59: 78–87
Liu C., Kelnar K., Liu B., Chen X., Calhoun-Davis T., Li H., Patrawala L., Yan H., Jeter C., Honorio S., Wiggins J.F., Bader A.G., Fagin R., Brown D., Tang D.G.: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011; 17: 211–215
Liu C., Liu R, Zhang D., Deng Q., Liu B., Chao H.P., Rycaj K., Takata Y., Lin K., Lu Y., Zhong Y., Krolewski J., Shen J., Tang D.G.: MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun., 2017; 8: 14270
Liu R.S., Olkhow-Mitsel E., Jeyapala R., Zhao F., Commisso K., Klotz L., Loblaw A., Liu S.K., Vesprini D., Flesher N.E., Bapat B.: Assessment of serum microRNA biomarkers to predict reclassification of prostate cancer in patients on active surveillance. J. Urol., 2018; 199: 1475–1481
Liu Y.N., Yin J.J., Abou-Kheir W., Hynes P.G., Casey O.M., Fang L., Yi M., Stephens R.M., Seng V., Sheppard-Tillman H., Martin P., Kelly K.: Mir-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via slug-independent mechanisms. Oncogene, 2013; 32: 296–306
Majid S., Dar A.A., Saini S., Shahryari V., Arora S., Zaman M.S., Chang I., Yamamura S., Tanaka Y., Chiyomaru T., Deng G., Dahiya R.: miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin. Cancer Res., 2013; 19: 73–84
Massillo C., Dalton G.N., Farré P.L., De Luca P., De Siervi A.: Implications of microRNA dysregulation in the development of prostate cancer. Reproduction, 2017; 154: R81–R97
Mihelich B.L., Maranville J.C., Nolley R., Peehl D.M., Nonn L.: Elevated serum microRNA levels associate with absence of high-grade prostate cancer in a retrospective cohort. PLoS One, 2015; 10: e0124245
Miller K.D., Nogueira L., Mariotto A.B., Rowland J.H., Yabroff K.R., Alfano C.A., Jemal A., Kramer J.L., Siegel R.L.: Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019; 69: 363–385
Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosowa-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., Lin D.W., Urban N., Drescher C.W., Knudsen B.S., Stirewalt D.L. i wsp.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008; 105: 10513–10518
Porzycki P., Ciszkowicz E., Semik M., Tyrka M.: Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int. Urol. Nephrol., 2018; 50: 1619–1626
Rodríguez M., Bajo-Santos C., Hessvik N.P, Lorenz S., Fromm B., Berge V., Sandvig K., Linȇ A., Llorente A.: Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer., 2017; 16: 156
Ru P., Steele R., Newhall P., Phillips N.J., Toth K., Ray R.B.: miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer Ther., 2012; 11: 1166–1173
Shi X.B., Xue L., Ma A.H., Tepper C.G., Gandour-Edwards R., Kung H.J., de Vere-White R.W.: Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene, 2013; 32: 4130–4138
Shi X.H., Li X., Zhang H., He R.Z., Zhao Y., Zhou M., Pan S.T., Zhao C.L., Feng Y.C., Wang M., Guo X.J., Qin R.Y.: A five microRNA signature for survival prognosis in pancreatic adenocarcinoma based on TCGA data. Sci. Rep., 2018; 8: 7638
Stuopelyte K., Daniunaite K., Bakavicius A., Lazutka J.R., Jankevicius F., Jarmalaite S.: The utility of urine-circulating miRNAs for detection of prostate cancer. Br. J. Cancer, 2016; 115: 707–715
Sun Q., Weng D., Li K., Li S., Bai X., Fang C., Luo D., Wu P., Chen G., Wei J.: MicroRNA-139-5P inhibits human prostate cancer cell proliferation by targeting Notch1. Oncol. Lett., 2018; 16: 793–800
Tinay I., Tan M., Gui B., Werner L., Kibel A.S., Jia L.: Functional roles and potential clinical application of miRNA-345-5p in prostate cancer. Prostate, 2018; 78: 927–937
Tokudome S., Ando R., Koda Y.: Discoveries and application of prostate specific antigen, and some proposals to optimize prostate cancer screening. Cancer Manag. Res., 2016; 8: 45–47
Wang M., Yu W., Gao J., Ma W., Frentsch M., Thiel A., Liu M., Rahman N., Qin Z., Li X.: Micro-RNA-487a-3p functions as a new tumor suppressor in prostate cancer by targeting CCND1. J. Cell Physiol., 2020; 235: 1588–1600
Wang W., Liu J., Wu Q.: MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1. Eur. Rev. Med. Pharmacol. Sci., 2016; 20: 92–100
Wei J.T., Feng Z., Partin A.W., Brown E., Thompson I., Sokoll L., Chan D.W., Lotan Y., Kibel A.S., Busby J.E., Bidair M., Lin D.W., Taneja S.S., Viterbo R., Joon A.Y. i wsp.: Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J. Clin. Oncol., 2014; 32: 4066–4073
Yang Y., Guo J.X., Shao Z.Q.: miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac. J. Trop. Med., 2017; 10: 87–91
Yao J., Xu C., Fang Z., Li Y., Liu H., Wang Y., Xu C., Sun Y.: Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway. Biochem. Biophys. Res. Commun., 2016; 474: 213–219
Zhang S., Cai J., Xie W., Luo H., Yang F.: miR-202 suppresses prostate cancer growth and metastasis by targeting PIK3CA. Exp. Ther. Med., 2018; 16: 1499–1504
Zhou Y.J., Yang H.Q., Xia W., Cui L., Xu R.F., Lu H., Xue Z., Zhang B., Tian Z.N., Cao Y.J., Xing Z.Y., Yin S., He X.Z.: Down-regulation of miR-605 promotes the proliferation and invasion of prostate cancer cells by up-regulating EN2. Life Sci., 2017; 190: 7–14