Have a personal or library account? Click to login

Molekularne podłoże proteinopatii: przyczyna zespołów otępiennych i zaburzeń motorycznych

Open Access
|Jun 2021

References

  1. Abner E.L., Kryscio R.J., Schmitt F.A., Santacruz K.S., Jicha G.A., Lin Y., Neltner J.M., Smith C.D., Van Eldik L.J., Nelson P.T.: “End-stage” neurofibrillary tangle pathology in preclinical Alzheimer’s disease: Fact or fiction? J. Alzheimers Dis., 2011; 25: 445–453
  2. Ahmed T., Van der Jeugd A., Blum D., Galas M.C., D’Hooge R., Buee L., Balschun D.: Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol. Aging, 2014; 35: 2474–2478
  3. Amadoro G., Corsetti V., Ciotti M.T., Florenzano F., Capsoni S., Amato G., Calissano P.: Endogenous Aβ causes cell death via early tau hyperphosphorylation. Neurobiol. Aging, 2011; 32: 969–990
  4. An W.L., Cowburn R.F., Li L., Braak H., Alafuzoff I., Iqbal K., Iqbal I.G., Winblad B., Pei J.J.: Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am. J. Pathol., 2003; 163: 591–607
  5. Arun P., Oguntayo S., Albert S.V., Gist I., Wang Y., Nambiar M.P., Long J.B.: Acute decrease in alkaline phosphatase after brain injury: A potential mechanism for tauopathy. Neurosci. Lett., 2015; 609: 152–158
  6. Avila J., Jiménez J.S., Sayas C.L., Bolós M., Zabala J.C., Rivas G., Hernández F.: Tau structures. Front. Aging Neurosci., 2016; 8: 262
  7. Ayala Y.M., Zago P., D’Ambrogio A., Xu Y.F., Petrucelli L., Buratti E., Baralle F.E.: Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci., 2008; 121: 3778–3785
  8. Bartels T., Choi J.G., Selkoe D.J.: α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 2011; 477: 107–110
  9. Berning B.A., Walker A.K.: The pathobiology of TDP-43 C-terminal fragments in ALS and FTLD. Front. Neurosci., 2019; 13: 335
  10. Brandt R., Léger J., Lee G.: Interaction of tau with the neural plasma membrane mediated by tau’s aminoterminal projection domain. J. Cell Biol., 1995; 131: 1327–1340
  11. Burré J., Sharma M., Südhof T.C.: α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. USA, 2014; 111: E4274–E4283
  12. Bussell R.Jr., Eliezer D.: Effects of Parkinson’s disease-linked mutations on the structure of lipid-associated α-synuclein. Biochemistry, 2004; 43: 4810–4818
  13. Chartier-Harlin M.C., Kachergus J., Roumier C., Mouroux V., Douay X., Lincoln S., Levecque C., Larvor L., Andrieux J., Hulihan M., Waucquier N., Defebvre L., Amouyel P., Farrer M., Destée A.: α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 2004; 364: 1167–1169
  14. Chen R.H., Wislet-Gendebien S., Samuel F., Visanji N.P., Zhang G., Marsilio D., Langman T., Fraser P.E., Tandon A.: α-Synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J. Biol. Chem., 2013; 288: 7438–7449
  15. Cherry J.D., Tripodis Y., Alvarez V.E., Huber B., Kiernan P.T., Daneshvar D.H., Mez J., Montenigro P.H., Solomon T.M., Alosco M.L., Stern R.A., McKee A.C., Stein T.D.: Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol. Commun., 2016; 4: 112
  16. Chiang C.H., Grauffel C., Wu L.S., Kuo P.H., Doudeva L.G., Lim C., Shen C.K., Yuan H.S.: Structural analysis of disease-related TDP-43 D169G mutation: Linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci. Rep., 2016; 6: 21581
  17. Choi B.K., Choi M.G., Kim J.Y., Yang Y., Lai Y., Kweon D.H., Lee N.K., Shin Y.K.: Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc. Natl. Acad. Sci. USA, 2013; 110: 4087–4092
  18. Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., Fraser G., Stalder A.K., Beibel M., Staufenbiel M., Jucker M., Goedert M., Tolnay M.: Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol., 2009; 11: 909–913
  19. Cohen T.J., Hwang A.W., Restrepo C.R., Yuan C.X., Trojanowski J.Q., Lee V.M.: An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun., 2015; 6: 5845
  20. Conway K.A., Harper J.D., Lansbury P.T.: Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med., 1998; 4: 1318–1320
  21. Coskuner O., Wise-Scira O.: Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics. ACS Chem. Neurosci., 2013; 4: 1101–1113
  22. Dawson H.N., Ferreira A., Eyster M.V., Ghoshal N., Binder L.I., Vitek M.P.: Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci., 2001; 114: 1179–1187
  23. Dayanandan R., Van Slegtenhorst M., Mack T.G., Ko L., Yen S.H., Leroy K., Brion J.P., Anderton B.H., Hutton M., Lovestone S.: Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett., 1999; 446: 228–232
  24. Dementia. https://www.who.int/en/news-room/fact-sheets/detail/dementia (17.04.2020)
  25. Derisbourg M., Leghay C., Chiappetta G., Fernandez-Gomez F.J., Laurent C., Demeyer D., Carrier S., Buée-Scherrer V., Blum D., Vinh J., Sergeant N., Verdier Y., Buée L., Hamdane M.: Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci. Rep., 2015; 5: 9659
  26. Derkinderen P., Scales T.M., Hanger D.P., Leung K.Y., Byers H.L., Ward M.A., Lenz C., Price C., Bird I.N., Perera T., Kellie S., Williamson R., Noble W., Van Etten R.A., Leroy K. i wsp.: Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J. Neurosci., 2005; 25: 6584–6593
  27. Dixit R., Ross J.L., Goldman Y.E., Holzbaur E.L.: Differential regulation of dynein and kinesin motor proteins by tau. Science, 2008; 319: 1086–1089
  28. Doherty C.P.A., Ulamec S.M., Maya-Martinez R., Good S.C., Makepeace J., Khan G.N., van Oosten-Hawle P., Radford S.E., Brockwell D.J.: A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat. Struct. Mol. Biol., 2020; 27: 249–259
  29. Dugger B.N., Dickson D.W.: Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017; 9: a028035
  30. Fares M.B., Ait-Bouziad N., Dikiy I., Mbefo M.K., Jovičić A., Kiely A., Holton J.L., Lee S.J., Gitler A.D., Eliezer D., Lashuel H.A.: The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet., 2014; 23: 4491–4509
  31. Fischer D., Mukrasch M.D., Biernat J., Bibow S., Blackledge M., Griesinger C., Mandelkow E., Zweckstetter M.: Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry, 2009; 48: 10047–10055
  32. Flores B.N., Li X., Malik A.M., Martinez J., Beg A.A., Barmada S.J.: An intramolecular salt bridge linking TDP43 RNA binding, protein stability, and TDP43-dependent neurodegeneration. Cell. Rep., 2019; 27: 1133–1150.e8
  33. François-Moutal L., Perez-Miller S., Scott D.D., Miranda V.G., Mollasalehi N., Khanna M.: Structural insights into TDP-43 and effects of post-translational modifications. Front. Mol. Neurosci., 2019; 12: 301
  34. Fraser P.E., Yang D.S., Yu G., Lévesque L., Nishimura M., Arawaka S., Serpell L.C., Rogaeva E., St George-Hyslop P.: Presenilin structure, function and role in Alzheimer disease. Biochim. Biophys. Acta, 2000; 1502: 1–15
  35. Frenkel-Pinter M., Stempler S., Tal-Mazaki S., Losev Y., Singh-Anand A., Escobar-Álvarez D., Lezmy J., Gazit E., Ruppin E., Segal D.: Altered protein glycosylation predicts Alzheimer’s disease and modulates its pathology in disease model Drosophila. Neurobiol. Aging, 2017; 56: 159–171
  36. Fusco G., Chen S.W., Williamson P.T.F., Cascella R., Perni M., Jarvis J.A., Cecchi C., Vendruscolo M., Chiti F., Cremades N., Ying L., Dobson C.M., De Simone A.: Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science, 2017; 358: 1440–1443
  37. Gámez-Valero A., Beyer K.: Alternative Splicing of alpha- and beta-synuclein genes plays differential roles in synucleinopathies. Genes, 2018; 9: 63
  38. Garnier C., Devred F., Byrne D., Puppo R., Roman A.Y., Malesinski S., Golovin A.V., Lebrun R., Ninkina N.N., Tsvetkov P.O.: Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates. Sci. Rep., 2017; 7: 6812
  39. Gauthier-Kemper A., Suárez Alonso M., Sündermann F., Niewidok B., Fernandez M.P., Bakota L., Heinisch J.J., Brandt R.: Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau’s axonal localization. J. Biol. Chem., 2018; 293: 8065–8076
  40. Gong C.X., Singh T.J., Grundke-Iqbal I., Iqbal K.: Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem., 1993; 61: 921–927
  41. Götz J., Probst A., Spillantini M.G., Schäfer T., Jakes R., Bürki K., Goedert M.: Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J., 1995; 14: 1304–1313
  42. Gómez-Santos C., Ferrer I., Reiriz J., Viñals F., Barrachina M., Ambrosio S.: MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res., 2002; 935: 32–39
  43. Hans F., Eckert M., von Zweydorf F., Gloeckner C.J., Kahle P.J.: Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem., 2018; 293: 16083–16099
  44. Heicklen-Klein A., Ginzburg I.: Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J. Neurochem., 2000; 75: 1408–1418
  45. Highley J.R., Kirby J., Jansweijer J.A., Webb P.S., Hewamadduma C.A., Heath P.R., Higginbottom A., Raman R., Ferraiuolo L., Cooper-Knock J., McDermott C.J., Wharton S.B., Shaw P.J., Ince P.G.: Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol. Appl. Neurobiol., 2014; 40: 670–685
  46. Hirokawa N., Shiomura Y., Okabe S.: Tau proteins: the molecular structure and mode of binding on microtubules. J. Cell Biol., 1988; 107: 1449–1459
  47. Hosokawa M., Kondo H., Serrano G.E., Beach T.G., Robinson A.C., Mann D.M., Akiyama H., Hasegawa M., Arai T.: Accumulation of multiple neurodegenerative disease-related proteins in familial fronto-temporal lobar degeneration associated with granulin mutation. Sci. Rep., 2017; 7: 1513
  48. Huin V., Buée L., Behal H., Labreuche J., Sablonnière B., Dhaenens C.M.: Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer’s disease and progressive supranuclear palsy brains. Sci. Rep., 2017; 7: 12589
  49. Iguchi Y., Katsuno M., Ikenaka K., Ishigaki S., Sobue G.: Amyotrophic lateral sclerosis: An update on recent genetic insights. J Neurol., 2013; 260: 2917–2927
  50. Ittner L.M., Götz J.: Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci., 2011; 12: 65–72
  51. Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., Wölfing H., Chieng B.C., Christie M.J., Napier I.A., Eckert A., Staufenbiel M., Hardeman E., Götz J.: Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell, 2010; 142: 387–397
  52. Jakes R., Spillantini M.G., Goedert M.: Identification of two distinct synucleins from human brain. FEBS Lett., 1994; 345: 27–32
  53. Jao C.C., Der-Sarkissian A., Chen J., Langen R.: Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc. Natl. Acad. Sci. USA, 2004; 101: 8331–8336
  54. Jiang L.L., Xue W., Hong J.Y., Zhang J.T., Li M.J., Yu S.N., He J.H., Hu H.Y.: The N-terminal dimerization is required for TDP-43 splicing activity. Sci. Rep., 2017; 7: 6196
  55. Jin H., Kanthasamy A., Ghosh A., Yang Y., Anantharam V., Kanthasamy A.G.: α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J. Neurosci., 2011; 31: 2035–2051
  56. Johnson G.V., Seubert P., Cox T.M., Motter R., Brown J.P., Galasko D.: The tau protein in human cerebrospinal fluid in Alzheimer’s disease consists of proteolytically derived fragments. J. Neurochem., 1997; 68: 430–433
  57. Kametani F., Nonaka T., Suzuki T., Arai T., Dohmae N., Akiyama H., Hasegawa M.: Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem. Biophys. Res. Commun., 2009; 382: 405–409
  58. Kanaan N.M., Morfini G.A., LaPointe N.E., Pigino G.F., Patterson K.R., Song Y., Andreadis A., Fu Y., Brady S.T., Binder L.I.: Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J. Neurosci., 2011; 31: 9858–9868
  59. Kawahara M., Ohtsuka I., Yokoyama S., Kato-Negishi M., Sadakane Y.: Membrane incorporation, channel formation, and disruption of calcium homeostasis by Alzheimer’s β-amyloid protein. Int. J. Alzheimers Dis., 2011; 2011: 304583
  60. Kenessey A., Nacharaju P., Ko L.W., Yen S.H.: Degradation of tau by lysosomal enzyme cathepsin D: Implication for Alzheimer neurofibrillary degeneration. J. Neurochem., 1997; 69: 2026–2038
  61. Khalaf O., Fauvet B., Oueslati A., Dikiy I., Mahul-Mellier A.L., Ruggeri F.S., Mbefo M.K., Vercruysse F., Dietler G., Lee S.J., Eliezer D., Lashuel H.A.: The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J. Biol. Chem., 2014; 289: 21856–21876
  62. Kosik K.S., Orecchio L.D., Bakalis S., Neve R.L.: Developmentally regulated expression of specific tau sequences. Neuron, 1989; 2: 1389–1397
  63. Kühnlein P., Sperfeld A.D., Vanmassenhove B., Van Deerlin V., Lee V.M., Trojanowski J.Q., Kretzschmar H.A., Ludolph A.C., Neumann M.: Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch. Neurol., 2008; 65: 1185–1189
  64. Kumar S., Jangir D.K., Kumar R., Kumari M., Bhavesh N.S., Maiti T.K.: Role of sporadic Parkinson disease associated mutations A18T and A29S in enhanced α-synuclein fibrillation and cytotoxicity. ACS Chem. Neurosci., 2018; 9: 230–240
  65. Lei P., Ayton S., Finkelstein D.I., Spoerri L., Ciccotosto G.D., Wright D.K., Wong B.X., Adlard P.A., Cherny R.A., Lam L.Q., Roberts B.R., Volitakis I., Egan G.F., McLean C.A., Cappai R. i wsp.: Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med., 2012; 18: 291–295
  66. Liu F., Grundke-Iqbal I., Iqbal K., Gong C.X.: Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci., 2005; 22: 1942–1950
  67. Liu Y., Lv K., Li Z., Yu A.C., Chen J., Teng J.: PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability. J. Biol. Chem., 2012; 287: 39911–39924
  68. Lu J., Duan W., Guo Y., Jiang H., Li Z., Huang J., Hong K., Li C.: Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res. Bull., 2012; 89: 185–190
  69. Lundblad M., Decressac M., Mattsson B., Björklund A.: Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc. Natl. Acad. Sci. USA, 2012; 109: 3213–3219
  70. Maroteaux L., Campanelli J.T., Scheller R.H.: Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci., 1988; 8: 2804–2815
  71. Martin L., Latypova X., Terro F.: Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int., 2011; 58: 458–471
  72. Matsuoka Y., Picciano M., Malester B., LaFrancois J., Zehr C., Daeschner J.M., Olschowka J.A., Fonseca M.I., O’Banion M.K., Tenner A.J., Lemere C.A., Duff K.: Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am. J. Pathol., 2001; 158: 1345–1354
  73. Meade R.M., Fairlie D.P., Mason J.M.: Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Mol. Neurodegener., 2019; 14: 29
  74. Mena R., Luna-Muñoz J.C.: Stages of pathological tau-protein processing in Alzheimer’s disease: From soluble aggregations to polymerization into insoluble Tau-PHFs. W: Current Hypotheses and Research Milestones in Alzheimer’s Disease, red.: R.B. Maccoini, G. Perry. Springer US, New York 2009, 79–91
  75. Min S.W., Cho S.H., Zhou Y., Schroeder S., Haroutunian V., Seeley W.W., Huang E.J., Shen Y., Masliah E., Mukherjee C., Meyers D., Cole P.A., Ott M., Gan L.: Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 2010; 67: 953–966
  76. Mohite G.M., Navalkar A., Kumar R., Mehra S., Das S., Gadhe L.G., Ghosh D., Alias B., Chandrawanshi V., Ramakrishnan A., Mehra S., Maji S.K.: The familial α-synuclein A53E mutation enhances cell death in response to environmental toxins due to a larger population of oligomers. Biochemistry, 2018; 57: 5014–5028
  77. Neumann M., Kwong L.K., Lee E.B., Kremmer E., Flatley A., Xu Y., Forman M.S., Troost D., Kretzschmar H.A., Trojanowski J.Q., Lee V.M.: Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol., 2009; 117: 137–149
  78. Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., Bruce J., Schuck T., Grossman M., Clark C.M., McCluskey L.F., Miller B.L., Masliah E., Mackenzie I.R., Feldman H. i wsp.: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006; 314: 130–133
  79. Neve R.L., Harris P., Kosik K.S., Kurnit D.M., Donlon T.A.: Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain. Res., 1986; 387: 271–280
  80. Ou S.H., Wu F., Harrich D., García-Martínez L.F., Gaynor R.B.: Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol., 1995; 69: 3584–3596
  81. Ozer R.S., Halpain S.: Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton. Mol. Biol. Cell, 2000; 11: 3573–3587
  82. Pandey N., Schmidt R.E., Galvin J.E.: The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Exp. Neurol., 2006; 197: 515–520
  83. Pesiridis G.S., Lee V.M., Trojanowski J.Q.: Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum. Mol. Genet., 2009; 18: R156–R162
  84. Pinarbasi E.S., Cağatay T., Fung H.Y.J., Li Y.C., Chook Y.M., Thomas P.J.: Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Sci. Rep., 2018; 8: 7083
  85. Plotegher N., Kumar D., Tessari I., Brucale M., Munari F., Tosatto L., Belluzzi E., Greggio E., Bisaglia M., Capaldi S., Aioanei D., Mammi S., Monaco H.L., Samo B., Bubacco L.: The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Hum. Mol. Genet., 2014; 23: 5615–5629
  86. Polymenidou M., Lagier-Tourenne C., Hutt K.R., Huelga S.C., Moran J., Liang T.Y., Ling S.C., Sun E., Wancewicz E., Mazur C., Kordasiewicz H., Sedaghat Y., Donohue J.P., Shiue L., Bennett C.F. i wsp.: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci., 2011; 14: 459–468
  87. Prasad A., Sivalingam V., Bharathi V., Girdhar A., Patel B.K.: The amyloidogenicity of a C-terminal region of TDP-43 implicated in amyotrophic lateral sclerosis can be affected by anions, acetylation and homodimerization. Biochimie, 2018; 150: 76–87
  88. Qureshi H.Y., Paudel H.K.: Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and α-synuclein mutations promote Tau protein phosphorylation at Ser262 and destabilize microtubule cytoskeleton in vitro. J. Biol. Chem., 2011; 286: 5055–5068
  89. Ramaswami M., Taylor J.P., Parker R.: Altered ribostasis: RNA-protein granules in degenerative disorders. Cell, 2013; 154: 727–736
  90. Rocca W.A.: The burden of Parkinson’s disease: A worldwide perspective. Lancet Neurol., 2018; 17: 928–929
  91. Russo M.A., Tomino C., Vernucci E., Limana F., Sansone L., Frustaci A., Tafani M.: Hypoxia and inflammation as a consequence of β-fibril accumulation: A perspective view for new potential therapeutic targets. Oxid. Med. Cell. Longev., 2019; 2019: 7935310
  92. Salvatori I., Ferri A., Scaricamazza S., Giovannelli I., Serrano A., Rossi S., D’Ambrosi N., Cozzolino M., Giulio A.D., Moreno S., Valle C., Carrì M.T.: Differential toxicity of TAR DNA-binding protein 43 iso-forms depends on their submitochondrial localization in neuronal cells. J. Neurochem., 2018; 146: 585–597
  93. Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., Jackson B., McKee A.C., Alvarez V.E., Lee N.C., Hall G.F.: Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem., 2012; 287: 3842–3849
  94. Siddiqui I.J., Pervaiz N., Abbasi A.A.: The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci. Rep., 2016; 6: 24475
  95. Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., Hulihan M., Peuralinna T., Dutra A., Nussbaum R., Lincoln S., Crawley A., Hanson M., Maraganore D., Adler C. i wsp.: α-synuclein locus triplication causes Parkinson’s disease. Science, 2003; 302: 841
  96. Spillantini M.G., Divane A., Goedert M.: Assignment of human α-synuclein (SNCA) and β-synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics, 1995; 27: 379–381
  97. Sprovieri T., Ungaro C., Perrone B., Naimo G.D., Spataro R., Cavallaro S., La Bella V., Conforti F.L.: A novel S379A TARDBP mutation associated to late-onset sporadic ALS. Neurol. Sci., 2019; 40: 2111–2118
  98. Stefanoska K., Volkerling A., Bertz J., Poljak A., Ke Y.D., Ittner L.M., Ittner A.: An N-terminal motif unique to primate tau enables differential protein-protein interactions. J. Biol. Chem., 2018; 293: 3710–3719
  99. Strang K.H., Golde T.E., Giasson B.I.: MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest., 2019; 99: 912–928
  100. Sultan A., Nesslany F., Violet M., Bégard S., Loyens A., Talahari S., Mansuroglu Z., Marzin D., Sergeant N., Humez S., Colin M., Bonnefoy E., Buée L., Galas M.C.: Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem., 2011; 286: 4566–4575
  101. Takeda T.: Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology, 2018; 38: 72–81
  102. TARDBP TAR DNA binding protein [Homo sapiens (human)] – Gene – NCBI. https://www.ncbi.nlm.nih.gov/gene/23435 (02.06.2020)
  103. Turner B.J., Bäumer D., Parkinson N.J., Scaber J., Ansorge O., Talbot K.: TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. BMC Neurosci., 2008; 9: 104
  104. van Swieten J., Spillantini M.G.: Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol., 2007; 17: 63–73
  105. Vicente Miranda H., Cássio R., Correia-Guedes L., Gomes M.A., Chegão A., Miranda E., Soares T., Coelho M., Rosa M.M., Ferreira J.J., Outeiro T.F.: Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson’s disease. Sci. Rep., 2017; 7: 13713
  106. von Bergen M., Barghorn S., Biernat J., Mandelkow E.M., Mandelkow E.: Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim. Biophys. Acta, 2005; 1739: 158–166
  107. Wang Y.T., Kuo P.H., Chiang C.H., Liang J.R., Chen Y.R., Wang S., Shen J.C., Yuan H.S.: The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J. Biol. Chem., 2013; 288: 9049–9057
  108. Watanabe A., Hasegawa M., Suzuki M., Takio K., Morishima-Kawashima M., Titani K., Arai T., Kosik K.S., Ihara Y.: In vivo phosphorylation sites in fetal and adult rat tau. J. Biol. Chem., 1993; 268: 25712–25717
  109. Wilhelmsen K.C., Lynch T., Pavlou E., Higgins M., Nygaard T.G.: Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21–22. Am. J. Hum. Genet., 1994; 55: 1159–1165
  110. Wong Y.C., Krainc D.: α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat. Med., 2017; 23: 1–13
  111. Yamada K., Holth J.K., Liao F., Stewart F.R., Mahan T.E., Jiang H., Cirrito J.R., Patel T.K., Hochgräfe K., Mandelkow E.M., Holtzman D.M.: Neuronal activity regulates extracellular tau in vivo. J. Exp. Med., 2014; 211: 387–393
  112. Yang W., Wang X., Duan C., Lu L., Yang H.: Alpha-synuclein over-expression increases phosphoprotein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem. Int., 2013; 63: 180–194
  113. Yarchoan M., Toledo J.B., Lee E.B., Arvanitakis Z., Kazi H., Han L.Y., Louneva N., Lee V.M., Kim S.F., Trojanowski J.Q., Arnold S.E.: Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol., 2014; 128: 679–689
  114. Yuan A., Kumar A., Peterhoff C., Duff K., Nixon R.A.: Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J. Neurosci., 2008; 28: 1682–1687
  115. Yuzwa S.A., Macauley M.S., Heinonen J.E., Shan X., Dennis R.J., He Y., Whitworth G.E., Stubbs K.A., McEachern E.J., Davies G.J., Vocadlo D.J.: A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008; 4: 483–490
  116. Zarranz J.J., Alegre J., Gómez-Esteban J.C., Lezcano E., Ros R., Ampuero I., Vidal L., Hoenicka J., Rodriguez O., Atarés B., Llorens V., Gomez Tortosa E., del Ser T., Muñoz D.G., de Yebenes J.G.: The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol., 2004; 55: 164–173
  117. Zempel H., Thies E., Mandelkow E., Mandelkow E.M.: Aβ oligomers cause localized Ca2+ elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J. Neurosci., 2010; 30: 11938–11950
  118. Zhang Y., Chen K., Sloan S.A., Bennett M.L., Scholze A.R., O’Keeffe S., Phatnani H.P., Guarnieri P., Caneda C., Ruderisch N., Deng S., Liddelow S.A., Zhang C., Daneman R., Maniatis T. i wsp.: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014; 34: 11929–11947
  119. Zhang Y.W., Thompson R., Zhang H., Xu H.: APP processing in Alzheimer’s disease. Mol. Brain., 2011; 4: 3
  120. Zheng W.H., Bastianetto S., Mennicken F., Ma W., Kar S.: Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 2002; 115: 201–211
Language: English
Page range: 456 - 473
Submitted on: Jul 23, 2020
Accepted on: Feb 26, 2021
Published on: Jun 18, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Emilia Zgórzyńska, Klaudia Krawczyk, Patrycja Bełdzińska, Anna Walczewska, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.