Have a personal or library account? Click to login
Udział czynników endokrynnych i komórek macierzystych w regeneracji mięśni szkieletowych* Cover

Udział czynników endokrynnych i komórek macierzystych w regeneracji mięśni szkieletowych*

Open Access
|Jun 2021

References

  1. Agapitou V., Tzanis G., Dimopoulos S., Karatzanos E., Karga H., Nanas S.: Effect of combined endurance and resistance training on exercise capacity and serum anabolic steroid concentration in patients with chronic heart failure. Hellenic. J. Cardiol., 2018; 59: 179–181
  2. Allen D.L., Teitelbaum D.H., Kurachi K.: Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am. J. Physiol. Cell. Physiol., 2003; 284: C805–C815
  3. Amir R., Ben-Sira D., Sagiv M.: IGF-I and FGF-2 responses to Win-gate anaerobic test in older men. J. Sports. Sci. Med., 2007; 6: 227–232
  4. Annibalini G., Lucertini F., Agostini D., Vallorani L., Gioacchini A., Barbieri E., Guescini M., Casadei L., Passalia A., Del Sal M., Piccoli G., Andreani M., Federici A., Stocchi V.: Concurrent aerobic and resistance training has anti-inflammatory effects and increases both plasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabetic patients. Oxid. Med. Cell. Longev, 2017; 2017: 3937842
  5. Archacka K., Kowalski K.K., Brzóska-Wójtowicz E.: Czy komórki satelitowe są macierzyste? Post. Bioch., 2013; 59: 205–218
  6. Archacka K., Moraczewski J., Grabowska I.: Udział niemięśniowych komórek macierzystych w regeneracji mięśni szkieletowych. Post. Biol. Komórki, 2010; 37: 187–207
  7. Basualto-Alarcón C., Varela D., Duran J., Maass R., Estrada M.: Sarcopenia and androgens: A link between pathology and treatment. Front. Endocrinol., 2014; 5: 217
  8. Beauchamp J.R., Morgan J.E., Pagel C.N., Partridge T.A.: Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell. Biol., 1999; 144: 1113–1122
  9. Bhasin S., Storer T., Berman N., Callegari C., Clevenger B., Phillips J., Bunnell T.J., Tricker R., Shirazi A., Casaburi R.: The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Engl. J. Med., 1996; 335: 1–7
  10. Bosiacki M., Lubkowska A.: Starzenie się a ekspresja metaloproteinaz macierzy zewnątrzkomórkowej w mięśniach. Pomeranian J. Life. Sci., 2019; 65: 105–112
  11. Burdzińska A., Berwid S., Orzechowski A.: Transplantacje komórek mięśniowych – oczekiwania, możliwości i ograniczenia. Postępy Hig. Med. Dośw., 2005; 59: 299–308
  12. Carmeli E., Moas M., Lennon S., Powers S.K.: High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres. Exp. Physiol., 2005; 90: 613–619
  13. Charifi N., Kadi F., Féasson L., Denis C.: Effects of endurance traning on satellite cell frequency in skeletal muscle of old men. Muscle Nerve, 2003; 28: 87–92
  14. Chaudhary S., Shenoy S.: Analysis of hormonal responses to aerobic and anaerobic zone training. J. M. S. C. R., 2015; 3: 4677–4683
  15. Chen H.T., Chung Y.C., Chen Y.J., Ho S.Y., Wu H.J.: Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J. Am. Geriatr. Soc., 2017; 65: 827–832
  16. Chen X., Li Y.: Role of matrix metalloproteinases in skeletal muscle: Migration, differentiation, regeneration and fibrosis. Cell. Adh. Migr., 2009; 3: 337–341
  17. Chernausek S.D., Backeljauw P.F., Frane J., Kuntze J., Underwood L.E., GH Insensitivity Syndrome Collaborative Group: Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity. J. Clin. Endocrinol. Metab., 2007; 92: 902–910
  18. Cho S.Y., Roh H.T.: Taekwondo enhances cognitive function as a result of increased neurotrophic growth factors in elderly women. Int. J. Environ. Res. Public Health, 2019; 16: 962
  19. Chyu M.C., Zhang Y., Brismée J.M., Dagda R.Y., Chaung E., Von Bergen V., Doctolero S., Shen C.L.: Effects of martial arts exercise on body composition, serum biomarkers and quality of life in overweight/obese premenopausal women: A pilot study. Clin. Med. Insights Womens Health, 2013; 6: 55–65
  20. Clemmons D.R.: Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J. Mol. Endocrinol., 2018; 61: T139–T169
  21. Collins C.A., Olsen I., Zammit P.S., Heslop L., Petrie A., Partridge T.A., Morgan J.E.: Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 2005; 122: 289–301
  22. Corotchi M.C., Popa M.A., Simionescu M.: Testosterone stimulates proliferation and preserves stemness of human adult mesenchymal stem cells and endothelial progenitor cells. Rom. J. Morphol. Embryol., 2016; 57: 75–80
  23. Cottle B.J., Lewis F.C., Shone V., Ellison-Hughes G.M.: Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell. Res. Ther., 2017; 8: 158
  24. Cui S.F., Li W., Niu J., Zhang C.Y., Chen X., Ma J.Z.: Acute responses of circulating microRNAs to low-volume sprint interval cycling. Front Physiol., 2015; 6: 311
  25. Cunha P.M., Nunes J.P., Tomeleri C.M., Nascimento M.A., Schoenfeld B.J., Antunes M., Gobbo L.A., Teixeira D., Cyrino E.S.: Resistance training performed with single and multiple sets induces similar improvements in muscular strength, muscle mass, muscle quality, and IGF-1 in older women: A randomized controlled trial. J. Strength Cond. Res., 2020; 34: 1008–1016
  26. Deane C.S., Hughes D.C., Sculthorpe N., Lewis M.P., Stewart C.E., Sharples A.P.: Impaired hypertrophy in myoblasts is improved with testosterone administration. J. Steroid. Biochem. Mol. Biol., 2013; 138: 152–161
  27. Dreyer H.C., Blanco C.E., Sattler F.R., Schroeder E.T., Wiswell R.A.: Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve, 2006; 33: 242–253
  28. Englund D.A., Peck B.D., Murach K.A., Neal A.C., Caldwell H.A., McCarthy J.J., Peterson C.A., Dupont-Verteegden E.E.: Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy. Am. J. Physiol. Cell Physiol., 2019; 317: C719–C724
  29. Forcales S.V.: Potential of adipose-derived stem cells in muscular regenerative therapies. Front. Aging Neurosci., 2015; 7: 123
  30. Fukada S.I.: The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J. Biochem., 2018; 163: 353–358
  31. Gomes R.V., Moreira A., Lodo L., Nosaka K., Coutts A.J., Aoki M.S.: Monitoring training loads, stress, immune-endocrine responses and performance in tennis players. Biol. Sport, 2013; 30: 173–180
  32. Grabowska I., Zimowska M., Maciejewska K., Jablonska Z., Bazga A., Ozieblo M., Streminska W., Bem J., Brzoska E., Ciemerych M.A.: Adi-pose tissue-derived stromal cells in matrigel impacts the regeneration of severely damaged skeletal muscles. Int. J. Mol. Sci., 2019; 20: 3313
  33. Harridge S.D.: Plasticity of human skeletal muscle: Gene expression to in vivo function. Exp. Physiol., 2007; 92: 783–797
  34. Hashimoto H., Rebagliati M., Ahmad N., Muraoka O., Kurokawa T., Hibi M., Suzuki T.: The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development, 2004; 131: 1741–1753
  35. Hayes L.D., Grace F.M., Sculthorpe N., Herbert P., Ratcliffe J.W., Kilduff L.P., Baker J.S.: The effects of a formal exercise training programme on salivary hormone concentrations and body composition in previously sedentary aging men. Springerplus, 2013; 2: 18
  36. Heatwole C.R., Eichinger K.J., Friedman D.I., Hilbert J.E., Jackson C.E., Logigian E.L., Martens W.B., McDermott M.P., Pandya S.K., Quinn C., Smirnow A.M., Thornton C.A., Moxley R.T.3rd: Open-label trial of recombinant human insulin-like growth factor-1/recombinant human insulin-like growth factor binding protein-3 (rhIGF-1/rhIGFBP-3) in myotonic dystrophy type 1. Arch. Neurol., 2011; 68: 37–44
  37. Hejazi K., Hosseini S.R.: Influence of selected exercise on serum immunoglobulin, testosterone and cortisol in semi-endurance elite runners. Asian J. Sports Med., 2012; 3: 185–192
  38. Higashi Y., Gautam S., Delafontaine P., Sukhanov S.: IGF-1 and cardiovascular disease. Growth. Horm. IGF Res., 2019; 45: 6–16
  39. Huard J., Gharaibeh B., Usas A.: Regenerative medicine based on muscle-derived stem cells. Oper. Tech. Orthop., 2010; 20: 119–126
  40. Itariu B.K., Zeyda M., Prager G., Stulnig T.M.: Insulin-like growth factor 1 predicts post-load hypoglycemia following bariatric surgery: A prospective cohort study. PLoS One, 2014; 9: e94613
  41. Jung P., Zimowska M.: Metaloproteinazy macierzy zewnątrzkomórkowej w rozwoju, fizjologii i procesach degeneracyjnych mięśni szkieletowych. Post. Bioch., 2016; 62: 25–35
  42. Junnila R.K., List E.O., Berryman D.E., Murrey J.W., Kopchick J.J.: The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol., 2013; 9: 366–376
  43. Jȕrimäe J., Jȕrimäe T.: Leptin responses to short term exercise in college level male rowers. Br. J. Sports Med., 2005; 39: 6–9
  44. Kadi F., Schjerling P., Andersen L.L., Charifi N., Madsen J.L., Christensen L.R., Andersen J.L.: The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J. Physiol., 2004; 558: 1005–1012
  45. Kilian Y., Engel F., Wahl P., Achtzehn S., Sperlich B., Mester J.: Markers of biological stress in response to a single session of high-intensity interval training and high-volume training in young athletes. Eur. J. Appl. Physiol., 2016; 116: 2177–2186
  46. Kim T., Chang J.S., Kim H., Lee K.H., Kong I.D.: Intense walking exercise affects serum IGF-1 and IGFBP3. J. Lifestyle Med., 2015; 5: 21–25
  47. Kraemer W.J., Ratamess N.A., Hymer W.C., Nindl B.C., Fragala M.S.: Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise. Front. Endocrinol., 2020; 11: 33
  48. Kvorning T., Andersen M., Brixen K., Schjerling P., Suetta C., Madsen K.: Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans. J. Physiol., 2007; 578: 579–593
  49. Liu W., Wen Y., Bi P., Lai X., Liu X.S., Liu X., Kuang S.: Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myo-blast transplantation. Development, 2012; 139: 2857–2865
  50. Maass A., Düzel S., Brigadski T., Goerke M., Becke A., Sobieray U., Neumann K., Lövdén M., Lindenberger U., Bäckman L., Braun-Dullaeus R., Ahrens D., Heinze H.J., Müller N.G., Lessmann V., Sendtner M., Düzel E.: Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage, 2016; 131: 142–154
  51. Mackey A., Kjaer M., Dandanell S., Mikkelsen K.H., Holm L., Døssing S., Kadi F., Koskinen S.O., Jensen C.H., Schrøder H.D., Langberg H.: The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell response in humans. J. Appl. Physiol., 2007; 103: 425–431
  52. Mañes S., Mira E., Barbacid M.M., Ciprés A., Fernández-Resa P., Buesa J.M., Mérida I., Aracil M., Márquez G., Martìnez-A C.: Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem., 1997; 272: 25706–25712
  53. Marcell T.J., Harman S.M., Urban R.J., Metz D.D., Rodgers B.D., Blackman M.R.: Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. Am. J. Physiol. Endocrinol. Metab., 2001; 281: E1159–E1164
  54. Mendell J.R., Kissel J.T., Amato A.A., King W., Signore L., Prior T.W., Sahenk Z., Benson S., McAndrew P.E., Rice R., Nagaraja H., Stephens R., Lantry L., Morris G.E., Burghes A.H.: Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N. Engl. J. Med., 1995; 333: 832–838
  55. Meng J., Muntoni F., Morgan J.: CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability. Stem. Cell Res., 2018; 30: 43–52
  56. Mierzejewski B., Archacka K., Grabowska I., Florkowska A., Ciemerych M.A., Brzoska E.: Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin. Cell. Dev. Biol., 2020; 104: 93–104
  57. Milewska M., Grabiec K., Grzelkowska-Kowalczyk K.: Interakcje szlaków sygnałowych proliferacji i różnicowania w biogenezie. Postępy Hig. Med. Dośw., 2014; 68: 516–526
  58. Miller R.G., Sharma K.R., Pavlath G.K, Gussoni E., Mynhier M., Lanctot A.M., Greco C.M., Steinman L., Blau H.M.: Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study. Muscle Nerve, 1997; 20: 469–478
  59. Mitchell K.J., Pannérec A., Cadot B., Parlakian A., Besson V., Gomes E.R., Marazzi G., Sassoon D.A.: Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat. Cell Biol., 2010; 12: 257–266
  60. Molsted S., Andersen J.L., Eidemak I., Harrison A.P., Jørgensen N.: Resistance training and testosterone levels in male patients with chronic kidney disease undergoing dialysis. Biomed. Res. Int., 2014; 2014: 121273
  61. Molsted S., Andersen J.L., Harrison A.P., Eidemak I., Mackey A.L.: Fiber type-specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients. Muscle Nerve, 2015; 52: 736–745
  62. Montarras D., Morgan J., Collins C., Relaix F., Zaffran S., Cumano A., Partridge T., Buckingham M.: Direct isolation of satellite cells for skeletal muscle regeneration. Science, 2005; 309: 2064–2067
  63. Morawin B.: Rola testosteronu w regeneracji mięśni szkieletowych po wysiłku fizycznym. Rocznik Lubuski, 2014; 40: 95–105
  64. Møller A.B., Lønbro S., Farup J., Voss T.S., Rittig N., Wang J., Højris I., Mikkelsen U.R., Jessen N.: Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J. Cancer Res. Clin. Oncol., 2019; 145: 1449–1460
  65. Mueller S.M., Mihaylova V., Frese S., Petersen J.A., Ligon-Auer M., Aguayo D., Flück M., Jung H.H., Toigo M.: Satellite cell content in Huntington’s disease patients in response to endurance training. Orphanet J. Rare Dis., 2019; 14: 135
  66. Mukund K., Subramaniam S.: Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med., 2020; 12: e1462
  67. Negaresh R., Ranjbar R., Baker J.S., Habibi A., Mokhtarzade M., Gharibvand M.M., Fokin A.: Skeletal muscle hypertrophy, insulin-like growth factor 1, myostatin and follistatin in healthy and sarcopenic ederly men: The effect of whole-body resistance training. Int. J. Prev. Med., 2019; 10: 29
  68. Nemet D., Portal S., Zadik Z., Pilz-Burstein R., Adler-Portal D., Meckel Y., Eliakim A.: Training increases anabolic response and reduces inflammatory response to a single practice in elite male adolescent volleyball players. J. Pediatr. Endocrinol. Metab., 2012; 25: 875–880
  69. Nindl B.C., Alemany J.A., Tuckow A.P., Rarick K.R., Staab J.S., Kraemer W.J., Maresh C.M., Spiering B.A., Hatfield D.L., Flyvbjerg A., Frystyk J.: Circulating bioactive and immunoreactive IGF-I remain stable in women, despite physical fitness improvements after 8 weeks of resistance, aerobic, and combined exercise training. J. Appl. Physiol., 2010; 109: 112–120
  70. Onambele-Pearson G.L., Pearson S.J.: The magnitude and character of resistance-training-induced increase in tendon stiffness at old age is gender specific. Age, 2012; 34: 427–438
  71. Partridge T.: Myoblast transplantation. Neuromuscul. Disord., 2002; 12: S3–S6
  72. Peng H., Huard J.: Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl. Immunol., 2004; 12: 311–319
  73. Petriz B.A., Gomes C.P., Almeida J.A., De Oliveria G.P.Jr., Ribeiro F.M., Pereira R.W., Franco O.L.: The effects of acute and chronic exercise on skeletal muscle proteome. J. Cell Physiol., 2017; 232: 257–269
  74. Pronsato L., Milanesi L., Vasconsuelo A., La Colla A.: Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids, 2017; 124: 35–45
  75. Qu Z., Balkir L., van Deutekom J.C., Robbins P.D., Pruchnic R., Huard J.: Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol., 1998; 142: 1257–1267
  76. Rando T.A, Blau H.M.: Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol., 1994; 125: 1275–1287
  77. Renault V., Thornell L.E., Eriksson P.O., Butler-Browne G., Mouly W.: Regenerative potential of human skeletal muscle during aging. Aging Cell, 2002; 1: 132–139
  78. Riederer I., Negroni E., Bencze M., Wolff A., Aamiri A., Di Santo J.P., Silva-Barbosa S.D., Butler-Browne G., Savino W., Mouly V.: Slowing down differentiation of engrafted human myoblasts into immunodeficient mice correlates with increased proliferation and migration. Mol. Ther., 2012; 20: 146–154
  79. Rodriguez A.M., Pisani D., Dechesne C.A., Turc-Carel C., Kurzenne J.Y., Wdziekonski B., Villageois A., Bagnis C., Breittmayer J.P., Groux H., Ailhaud G., Dani C.: Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med., 2005; 201: 1397–1405
  80. Sacco A., Doyonnas R., Kraft P., Vitorovic S., Blau H.M.: Self-renewal and expansion of single transplanted muscle stem cells. Nature, 2008; 456: 502–506
  81. Saini A., Mastana S., Myers F., Lewis M.P.: ‘From death, lead me to immortality’ - mantra of ageing skeletal muscle. Curr. Genomics, 2013; 14: 256–267
  82. Sato K., Iemitsu M., Katayama K., Ishida K., Kanao Y., Saito M.: Responses of sex steroid hormones to different intensities of exercise in endurance athletes. Exp. Physiol., 2016; 101: 168–175
  83. Schmidt M., Schüler S.C., Hüttner S.S., von Eyss B., von Maltzahn J.: Adult stem cells at work: Regenerating skeletal muscle. Cell. Mol. Life Sci., 2019; 76: 2559–2570
  84. Schoenfeld B.J.: The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res., 2010; 24: 2857–2872
  85. Schulze M., Belema-Bedada F., Technau A., Braun T.: Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes. Dev., 2005; 19: 1787–1798
  86. Snijders T., Nederveen J.P., Bell K.E., Lau S.W., Mazara N., Kumbhare D.A., Phillips S.M., Parise G.: Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J. Physiol., 2019; 597: 105–119
  87. Song T., Sadayappan S.: Featured characteristics and pivotal roles of satellite cells in skeletal muscle regeneration. J. Muscle. Res. Cell. Motil., 2020; 41: 341–353
  88. Streuli C.: Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell Biol., 1999; 11: 634–640
  89. Sutkowy P.B., Augustyńska B., Woźniak A., Rakowski A.: Physical exercise combined with whole-body cryotherapy in evaluating the level of lipid peroxidation products and other oxidant stress indicators in kayakers. Oxid. Med. Cell. Longev., 2014; 2014: 402631
  90. Thompson J.L., Butterfield G.E., Marcus R., Hintz R.L., Van Loan M., Ghiron L., Hoffman A.R.: The effects of recombinant human insulin-like growth factor-I and growth hormone on body composition in elderly women. J. Clin. Endocrinol. Metab., 1995; 80: 1845–1852
  91. Torrente Y., Belicchi M., Sampaolesi M., Pisati F., Meregalli M., D’Antona G., Tonlorenzi R., Porretti L., Gavina M., Mamchaoui K., Pellegrino M.A., Furling D., Mouly V., Butler-Browne G.S., Bottinelli R. i wsp.: Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J. Clin. Invest., 2004; 114: 182–195
  92. Tota Ł., Piotrowska A., Pałka T., Morawska M., Mikuľáková W., Mucha D., Żmuda-Pałka M., Pilch W.: Muscle and intestinal damage in triathletes. PLoS One, 2019; 14: e0210651
  93. Tsuchiya Y., Sakuraba K., Ochi E.: High force eccentric exercise enhances serum tartrate-resistant acid phosphatase-5b and osteocalcin. J. Musculoskelet. Neuronal. Interact., 2014; 14: 50–57
  94. Vassilakos G., Barton E.R.: Insulin-like growth factor I regulation and its actions in skeletal muscle. Compr. Physiol., 2018; 9: 413–438
  95. Velloso C.P.: Regulation of muscle mass by growth hormone and IGF-I. Br. J. Pharmacol. 2008; 154: 557–568
  96. Vlachopapadopoulou E., Zachwieja J.J., Gertner J.M., Manzione D., Bier D.M., Matthews D.E., Slonim A.E.: Metabolic and clinical response to recombinant human insulin-like growth factor I in myotonic dystrophy - a clinical research center study. J. Clin. Endocrinol. Metab., 1995; 80: 3715–3723
  97. Wegner M., Koedijker J.M., Budde H.: The effect of acute exercise and psychosocial stress on fine motor skills and testosterone concentration in the saliva of high school students. PLoS One, 2014; 9: e92953
  98. Wennberg A.M., Hagen C.E., Machulda M.M., Hollman J.H., Roberts R.O., Knopman D.S., Petersen R.C., Mielke M.M.: The association between peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging. Neurobiol. Aging, 2018; 66: 68–74
  99. Wennberg A.M., Hagen C.E., Petersen R.C., Mielke M.M.: Trajectories of plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Study of Aging. Exp. Gerontol., 2018; 106: 67–73
  100. Wędrychowicz A., Dziatkowiak H., Sztefko K., Nazim J.: Zachowanie się IGF-I i jego białek wiążących IGFBP-1 i IGFBP-3 u dzieci i młodzieży chorych na cukrzycę typu 1 oraz ich zależność od kontroli metabolicznej cukrzycy. Diabetol. Dośw. Klin. 2003; 3: 489–499
  101. Wiewelhove T., Schneider C., Döweling A., Hanakam F., Rasche C., Meyer T., Kellmann M., Pfeiffer M., Ferrauti A.: Effects of different recovery strategies following a half-marathon on fatigue markers in recreational runners. PLoS One, 2018; 13: e0207313
  102. Yamakawa H., Kusumoto D., Hashimoto H., Yuasa S.: Stem cell aging in skeletal muscle regeneration and disease. Int. J. Mol. Sci., 2020; 21: 1830
  103. Zammit P.S., Relaix F., Nagata Y., Ruiz A.P., Collins C.A., Partridge T.A., Beauchamp J.R.: Pax7 and myogenic progression in skeletal muscle satellite cells. J. Cell Sci., 2006; 119: 1824–1832
  104. Zembroń-Łacny A., Krzywański J., Ostapiuk-Karolczuk J., Kasperska A.: Cell and molecular mechanisms of regeneration and reorganization of skeletal muscles. Ortop. Traumatol. Rehabil., 2012; 14: 1–11
  105. Zhang Y., Zhu Y., Li Y., Cao J., Zhang H., Chen M., Wang L., Zhang C.: Long-term engraftment of myogenic progenitors from adipose-derived stem cells and muscle regeneration in dystrophic mice. Hum. Mol. Genet., 2015; 24: 6029–6040
  106. Żebrowska A., Gąsior Z., Langfort J.: Serum IGF-I and hormonal responses to incremental exercise in athletes with and without left ventricular hypertrophy. J. Sports. Sci. Med., 2009; 8: 67–76
Language: English
Page range: 371 - 384
Submitted on: Apr 23, 2020
Accepted on: Dec 15, 2020
Published on: Jun 2, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Barbara Morawin, Agnieszka Zembroń-Łacny, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.