Have a personal or library account? Click to login
Rodzina białek gazdermin jako czynnik permeabilizujący błonę komórkową w procesie pyroptozy* Cover

Rodzina białek gazdermin jako czynnik permeabilizujący błonę komórkową w procesie pyroptozy*

Open Access
|May 2021

References

  1. Baker P.J., Boucher D., Bierschenk D., Tebartz C., Whitney P.G., D’Silva D.B., Tanzer M.C., Monteleone M., Robertson A.A., Cooper M.A., Alvarez-Diaz S., Herold M.J., Bedoui S., Schroder K., Masters S.L.: NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol., 2015; 45: 2918–2926
  2. Banerjee I., Behl B., Mendonca M., Shrivastava G., Russo A.J., Menoret A., Ghosh A., Vella A.T., Vanaja S.K., Sarkar S.N., Fitzgerald K.A., Rathinam V.A.: Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity, 2018; 49: 413–426.e5
  3. Bergsbaken T., Fink S.L., Cookson B.T.: Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009; 7: 99–109
  4. Chao K.L., Kulakova L., Herzberg O.: Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfa-tide and phosphoinositide binding protein. Proc. Natl. Acad. Sci. USA, 2017; 114: E1128–E1137
  5. Chen Q., Shi P., Wang Y., Zou D., Wu X., Wang D., Hu Q., Zou Y., Huang Z., Ren J., Lin Z., Gao X.: GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J. Mol. Cell Biol., 2019; 11: 496–508
  6. De Beeck K.O., Van Laer L., Van Camp G.: DFNA5, a gene involved in hearing loss and cancer: A review. Ann. Otol. Rhinol. Laryngol., 2012; 121: 197–207
  7. Defourny J., Aghaie A., Perfettini I., Avan P., Delmaghani S., Petit C.: Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc. Natl. Acad. Sci. USA, 2019; 116: 8010–8017
  8. Evavold C.L., Kagan J.C.: Defying death: The (w)hole truth about the fate of GSDMD pores. Immunity, 2019; 50: 15–17
  9. Evavold C.L., Ruan J., Tan Y., Xia S., Wu H., Kagan J.C.: The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity, 2018; 48: 35–44
  10. Feng S., Fox D., Man S.M.: Mechanisms of gasdermin family members in inflammasome signaling and cell death. J. Mol. Biol., 2018; 430: 3068–3080
  11. Gao J., Qiu X., Xi G., Liu H., Zhang F., Lv T., Song Y.: Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol. Rep., 2018; 40: 1971–1984
  12. Gonzalez Ramirez M.L., Poreba M., Snipas S.J., Groborz K., Drag M., Salvesen G.S.: Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. J. Biol. Chem., 2018; 293: 7058–7067
  13. Guo H., Xu S., Liu Y., Yang Y., Deng F., Xing Y., Lian X., Li Y.: Gsdma3 is required for mammary gland development in mice. Histochem. Cell Biol., 2017; 147: 575–583
  14. Harris S.L., Kazmierczak M., Pangršič T., Shah P., Chuchvara N., Barrantes-Freer A., Moser T., Schwander M.: Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice. Neuroscience, 2017; 344: 380–393
  15. Hayward J.A., Mathur A., Ngo C., Man S.M.: Cytosolic recognition of microbes and pathogens: Inflammasomes in action. Microbiol. Mol. Biol. Rev., 2018; 82: e00015–18
  16. He Y., Hara H., Arbor A.: HHS Public Access. 2017; 41: 1012–1021
  17. Heilig R., Dick M.S., Sborgi L., Meunier E., Hiller S., Broz P.: The gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol., 2018; 48: 584–592
  18. Huang X., Feng Y., Xiong G., Whyte S., Duan J., Yang Y., Wang K., Yang S., Geng Y., Ou Y., Chen D.: Caspase-11, a specific sensor for intra-cellular lipopolysaccharide recognition, mediates the non-canonical inflammatory pathway of pyroptosis. Cell Biosci., 2019; 9: 31
  19. Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., Warming S., Cuellar T., Haley B., Roose-Girma M., Phung Q.T., Liu P.S., Lill J.R., Li H., Wu J., Kummerfeld S. i wsp.: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015; 526: 666–671
  20. Kazmierczak M., Kazmierczak P., Peng A.W., Harris S.L., Shah P., Puel J.L., Lenoir M., Franco S.J., Schwander M.: Pejvakin, a candidate stereociliary rootlet protein, regulates hair cell function in a cell-autonomous manner. J. Neurosci., 2017; 37: 3447–3464
  21. Kovacs S.B., Miao E.A.: Gasdermins: Effectors of pyroptosis. Trends Cell Biol., 2017; 27: 673–684
  22. Lin H.Y., Lin P.H., Wu S.H., Yang L.T.: Inducible expression of gasdermin A3 in the epidermis causes epidermal hyperplasia and skin inflammation. Exp. Dermatol., 2015; 24: 897–899
  23. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., Lieberman J.: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016; 535: 153–158
  24. Lu H., Zhang S., Wu J., Chen M., Cai M.C., Fu Y., Li W., Wang J., Zhao X., Yu Z., Ma P., Zhuang G.: Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clin. Cancer Res., 2018; 24: 6066–6077
  25. Miguchi M., Hinoi T., Shimomura M., Adachi T., Saito Y., Niitsu H., Kochi M., Sada H., Sotomaru Y., Ikenoue T., Shigeyasu K., Tanakaya K., Kitadai Y., Sentani K., Oue N. i wsp.: Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One, 2016; 11: e0166422
  26. Moossavi M., Parsamanesh N., Bahrami A., Atkin S.L., Sahebkar A.: Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018; 17: 158
  27. Mulvihill E., Sborgi L., Mari S.A., Pfreundschuh M., Hiller S., Müller D.J.: Mechanism of membrane pore formation by human gasdermin-D. EMBO J., 2018; 37: e98321
  28. Panganiban R.A., Sun M., Dahlin A., Park H.R., Kan M., Himes B.E., Mitchel J.A., Iribarren C., Jorgenson E., Randell S.H., Israel E., Tantisira K., Shore S., Park J.A, Weiss S.T. i wsp.: A functional splicing variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol., 2018; 142: 1469–1478.e2
  29. Pfalzgraff A., Weindl G.: Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis. Trends Pharmacol. Sci., 2019; 40: 187–197
  30. Platnich J.M., Chung H., Lau A., Sandall C.F., Bondzi-Simpson A., Chen H.M., Komada T., Trotman-Grant A.C., Brandelli J.R., Chun J., Beck P.L., Philpott D.J., Girardin S.E., Ho M., Johnson R.P., MacDonald J.A., Armstrong G.D., Muruve D.A.: Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep., 2018; 25: 1525–1536.e7
  31. Qiu S., Liu J., Xing F.: „Hints” in the killer protein gasdermin D: Unveiling the secrets of gasdermins driving cell death. Cell Death Differ., 2017; 24: 588–596
  32. Ramos-Junior E.S., Morandini A.C.: Gasdermin: A new player to the inflammasome game. Biomed. J., 2017; 40: 313–316
  33. Rogers C., Erkes D.A., Nardone A., Aplin A.E., Fernandes-Alnemri T., Alnemri E.S.: Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun., 2019; 10: 1689
  34. Rogers C., Fernandes-Alnemri T., Mayes L., Alnemri D., Cingolani G., Alnemri E.S.: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun., 2017; 8: 14128
  35. Ruan J., Xia S., Liu X., Lieberman J., Wu H.: Cryo-EM structure of the gasdermin A3 membrane pore. Nature, 2018; 557: 62–67
  36. Saeki N., Usui T., Aoyagi K., Kim D.H., Sato M., Mabuchi T., Yanagihara K., Ogawa K., Sakamoto H., Yoshida T., Sasaki H.: Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer, 2009; 48: 261–271
  37. Samali A., Zhivotovsky B., Jones D., Nagata S., Orrenius S.: Apoptosis: Cell death defined by caspase activation. Cell Death Differ., 1999; 6: 495–496
  38. Sborgi L., Rühl S., Mulvihill E., Pipercevic J., Heilig R., Stahlberg H., Farady C.J., Müller D.J., Broz P., Hiller S.: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J., 2016; 35: 1766–1778
  39. Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., Cai T., Wang F., Shao F.: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015; 526: 660–665
  40. Song N., Li T.: Regulation of NLRP3 inflammasome by phosphorylation. Front. Immunol., 2018; 9: 2305
  41. Tamura M., Tanaka S., Fujii T., Aoki A., Komiyama H., Ezawa K., Sumiyama K., Sagai T., Shiroishi T.: Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics, 2007; 89: 618–629
  42. Tixeira R., Shi B., Parkes M.A., Hodge A.L., Caruso S., Hulett M.D., Baxter A.A., Phan T.K., Poon I.K.: Gasdermin E does not limit apoptotic cell disassembly by promoting early onset of secondary necrosis in Jurkat T cells and THP-1 monocytes. Front. Immunol., 2018; 9: 2842
  43. Xia S., Ruan J., Wu H.: Monitoring gasdermin pore formation in vitro. Methods Enzymol, 2019; 625: 95–107
  44. Xiao J., Wang C., Yao J.C., Alippe Y., Xu C., Kress D., Civitelli R., Abu-Amer Y., Kanneganti T.D., Link D.C., Mbalaviele G.: Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol., 2018; 16: e3000047
  45. Yi Y.S.: Regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory diseases. Immune Netw. 2018; 18: e41
  46. Yu J., Kang M.J., Kim B.J., Kwon J.W., Song Y.H., Choi W.A., Shin Y.J., Hong S.J.: Polymorphisms in GSDMA and GSDMB are associated with asthma susceptibility, atopy and BHR. Pediatr. Pulmonol., 2011; 46: 701–708
  47. Yuan Y.Y., Xie K.X., Wang S.L., Yuan L.W.: Inflammatory caspase-related pyroptosis: Mechanism, regulation and therapeutic potential for inflammatory bowel disease. Gastroenterol. Rep., 2018; 6: 167–176
Language: English
Page range: 337 - 344
Submitted on: Feb 18, 2020
Accepted on: Dec 15, 2020
Published on: May 25, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Dorota Kuc-Ciepluch, Karol Ciepluch, Michał Arabski, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.