Have a personal or library account? Click to login
In vitro Interaction between Fumonisin B1 and the Intestinal Microflora of Pigs Cover

In vitro Interaction between Fumonisin B1 and the Intestinal Microflora of Pigs

Open Access
|Jun 2017

References

  1. Amann R.I., W. Ludwig and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.10.1128/mr.59.1.143-169.19952393587535888
  2. Bartosch S., A. Fite, G.T. Macfarlane and M.E.T. McMurdo. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using RealTime PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Envirom. Microbiol. 70: 3575–3581.10.1128/AEM.70.6.3575-3581.200442777215184159
  3. Becker B., H. Bresch, U. Schillinger and P.G. Thiel. 1997. The effect of fumonisin B1 on the growth of bacteria. World J. Microbiol. Biotechnol. 13(5): 539–543.
  4. Burel C., M. Tanguy, P. Guerre, E. Boilletot, R. Cariolet, M. Queguiner, G. Postollec, P. Pinton, G. Salvat, I.P. Oswald and others. 2013. Effect of low dose of fumonisins on pig health:Immune status, intestinal microbiota and sensitivity to Salmonella. Toxins 5(4): 841–864.10.3390/toxins5040841370529423612754
  5. Castillo M., S.M. Martín-Orúe, E.G. Manzanilla, I. Badiola, M. Martín and J. Gasa. 2006. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by realtime PCR. Vet. Microbiol. 114(1–2): 165–170.
  6. Deshmukh S., R.K. Asrani, N. Jindal, D.R. Ledoux, G.E. Rottinghaus, M. Sharma and S.P. Singh. 2005. Effects of Fusarium moniliforme culture material containing known levels of fumonisin B1 on progress of Salmonella Gallinarum infection in Japanese quail: clinical signs and hematologic studies. Avian Dis. 49(2): 274–280.10.1637/7296-102804R16094834
  7. EFSA. 2005. Opinion of the Scientific Panel on contaminants in food chain on a request from the Commission related to fumonisins as undesirable substances in animal feed. EFSAJ 235: 1–32.10.2903/j.efsa.2005.235
  8. Fodor J., K. Meyer, C. Gottschalk, R. Mamet, L. Kametler, J. Bauer, P. Horn, F. Kovács and M. Kovács. 2007. In vitro microbial metabolism of fumonisin B1. Food Addit. Contam. 24(4): 416–420.
  9. Frese S.A., K. Parker, C.C. Calvert and D.A. Mills. 2015. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 2015(3): 2810.1186/s40168-015-0091-8449917626167280
  10. Gomah N.H. and A.N.A. Zohri. 2014. Inhibition of fungal growth and Fusarium toxins by selected cultures of lactic acid bacteria. J. Microbial. Biochem. Technol. S7: 001.10.4172/1948-5948.S7-001
  11. Heilig H.G., E.G. Zoetendal, E.E. Vaughan, P. Marteau, A.D.L. Akkermans and W.M. de Vos. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114–123.10.1128/AEM.68.1.114-123.200212654011772617
  12. Iheshiulor O.O.M., B.O. Esonu, O.K. Chuwuka, A.A. Omede, I.C. Okoli and I.P. Ogbuewu. 2011. Effects of mycotoxins in animal nutrition: A review. Asian J. Animal Sci. 5(1): 19–33
  13. Kim M.S. 2011. An integrated investigation of ruminal microbial communities using 16S r RNS gene-based techniques, p. 72. PhD Dissertation. The Ohio State University.
  14. Knasmüller S., N. Bresgen, F. Kassie, V. Mersch-Sundermann, W. Gelderblom, E. Zöhrer and P.M. Eckl. 1997. Genotoxic effects of three Fusarium mycotoxins, fumonisin B1, moniliformin and vomitoxin in bacteria and in primary cultures of rat hepatocytes. Mutat. Res. 391(1–2): 39–48.
  15. Marchesi J.R., T. Sato, A.J. Weightman, T.A. Martin, J.C. Fry, S.J. Hiom and W.G. Wade. 1998. Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA. Appl. Environ. Microbiol. 64(2): 795–799
  16. Mokoena M.P., P.K. Chelule and N. Gqaleni. 2005. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J. Food Prot. 68(10): 2095–2099.10.4315/0362-028X-68.10.209516245712
  17. Niderkorn V., D.P. Morgavi, E. Pujos, A. Tissandier and H. Boudra. 2007. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit. Contam. 24(4): 406–415.
  18. Niderkorn V., D.P. Morgavi, B. Aboab, M. Lemaire and H. Boudra. 2009. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J. Appl. Microbiol. 106(3): 977–985.
  19. Oswald I.P., C. Desautels, J. Laffitte, S. Fournout, S. Peres, M. Odin, P. Le Bars, J. Le Bars and J.M. Fairbrother. 2003. Mycotoxin fumonisin B1 increases intestinal colonization by pathogenic Esche richia coli in pigs. Appl. Environ. Microbiol. 69(10): 5870–5874.
  20. Pajarillo E.A., J.P. Chae, M.P. Balolong, H.B. Kim, K.S Seo and D.K. Kang. 2014. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 52(8): 646–651.10.1007/s12275-014-4270-225047525
  21. Su Y., W. Yao, O.N. Perez-Gutierrez, H. Smidt and W.Y. Zhu. 2008. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol. Ecol. 66(2008): 546–555.
  22. Szabó-Fodor J., C. Dall’Asta, C. Falavigna, M. Kachlek, Á. Szécsi, A. Szabó and M. Kovács. 2014. Determination of the amount of bioaccessible fumonisin B1 in different matrices after in vitro digestion. World Mycot. J. 8(3):261–267.
  23. Taranu I., D.E. Marin, S. Bouhet, F. Pascale, J.D. Bailly, J.D. Miller, P. Pinton and I.P. Oswald. 2005. Mycotoxin Fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol. Sci. 84: 301–307.10.1093/toxsci/kfi08615659571
  24. Walter J., G.W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D.M. Loach, K. Munro and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66: 297–303.10.1128/AEM.66.1.297-303.20009182110618239
  25. Zoghi A., K. Khosravi-Darani and S. Sohrabvandi. 2014. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem. 14(1): 84–98.
DOI: https://doi.org/10.5604/01.3001.0010.7858 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 245 - 250
Submitted on: Nov 21, 2016
Accepted on: Jan 12, 2017
Published on: Jun 28, 2017
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 HUU ANH DANG, ATTILA ZSOLNAI, MELINDA KOVACS, ISTVÁN BORS, ANDRÁS BÓNAI, BRIGITTA BÓTA, JUDIT SZABÓ-FODOR, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.