Have a personal or library account? Click to login
Association of CYP3A5 and POR polymorphisms with the maintenance tacrolimus dosage requirement in Thai recipients of kidney transplants Cover

Association of CYP3A5 and POR polymorphisms with the maintenance tacrolimus dosage requirement in Thai recipients of kidney transplants

Open Access
|Mar 2017

References

  1. Bowman LJ, Brennan DC. The role of tacrolimus in renal transplantation. Expert Opin Pharmacother. 2008; 9:635-43.10.1517/14656566.9.4.63518312164
  2. Haufroid V, Wallemacq P, VanKerckhove V, Elens L, De Meyer M, Eddour DC, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant. 2006; 6:2706-13.10.1111/j.1600-6143.2006.01518.x17049058
  3. Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol. 2007; 2:374-84.10.2215/CJN.0379110617699437
  4. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015; 98:15-24.
  5. Burckart GJ, Amur S. Update on the clinical pharmacogenomics of organ transplantation. Pharmacogenomics. 2010; 11:227-36.2013636110.2217/pgs.09.177
  6. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014; 53: 123-39.10.1007/s40262-013-0120-324249597
  7. Provenzani A, Santeusanio A, Mathis E, Notarbartolo M, Labbozzetta M, Poma P, et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol. 2013; 19:9156-73.10.3748/wjg.v19.i48.915624409044
  8. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001; 11:773-79.1174034110.1097/00008571-200112000-00005
  9. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genetics. 2001; 27:383-91.10.1038/8688211279519
  10. Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ, et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005; 33:884-7.10.1124/dmd.105.00382215833928
  11. Lamba JK, Lin YS, Schuetz EG Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002; 54:1271-94.1240664510.1016/S0169-409X(02)00066-2
  12. Tada H, Tsuchiya N, Satoh S, Kagaya H, Li Z, Sato K, et al. Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant Proc. 2005; 37:1730-2.1591944710.1016/j.transproceed.2005.02.073
  13. Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant. 2004; 78: 1182-7.10.1097/01.TP.0000137789.58694.B4
  14. Masters BS. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Biochem Biophys Res Commun. 2005; 338:507-19.10.1016/j.bbrc.2005.09.16516246311
  15. Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics. 2010; 20:611-8.2069730910.1097/FPC.0b013e32833e0cb5
  16. Agrawal V, Huang N, Miller WL. Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics. 2008; 18:569-76.1855103710.1097/FPC.0b013e32830054ac
  17. Huang N, Agrawal V, Giacomini KM, Miller WL. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci USA. 2008; 105:1733-38.10.1073/pnas.0711621105
  18. Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics. 2009; 19:877-83.10.1097/FPC.0b013e32833225e7
  19. Zhang JJ, Zhang H, Ding XL, Ma S, Miao LY. Effect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacrolimus in Chinese healthy male volunteers. Eur J Clin Pharmacol. 2013; 69:807-12.10.1007/s00228-012-1432-123097010
  20. Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One. 2014; 9:e86206.10.1371/journal.pone.008620624465960
  21. Zhang J, Zhang X, Liu L, Tong W. Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplant Proc. 2010; 42:3459-64.2109479710.1016/j.transproceed.2010.06.028
  22. Lesche D, Sigurdardottir V, Setoud R, Oberhansli M, Carrel T, Fiedler GM, et al. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther Drug Monit. 2014; 36:710-5.10.1097/FTD.000000000000008024739669
  23. de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics. 2011; 12:1281-91.10.2217/pgs.11.7721770725
  24. Elens L, Hesselink DA, Bouamar R, Budde K, de Fijter JW, De Meyer M, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit. 2014; 36:71-9.24061445
  25. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol. 2014; 70:685-93.10.1007/s00228-014-1656-324658827
  26. Fluck CE, Nicolo C, Pandey AV. Clinical, structural and functional implications of mutations and polymorphisms in human NADPH P450 oxidoreductase. Fundam Clin Pharmacol. 2007; 21: 399-410.10.1111/j.1472-8206.2007.00520.x17635179
  27. Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ. NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J Biol Chem. 2001; 276:29163-70.10.1074/jbc.M10173120011371558
DOI: https://doi.org/10.5372/1905-7415.1005.512 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 483 - 490
Published on: Mar 31, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Kreetachon Veerakikosol, Pajaree Chariyavilaskul, Natavudh Townamchai, Supeecha Wittayalertpanya, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.