References
- Kubo T, Ohno Y, Kauczor HU, Hatabu H. Radiation dose reduction in chest CT—review of available options. Eur J Radiol. 2014; 83:1953-61.2506675610.1016/j.ejrad.2014.06.033
- Kubo T, Lin PJ, Stiller W, Takahashi M, Kauczor HU, Ohno Y, et al. Radiation dose reduction in chest CT: a review. AJR. 2008; 190:335-43.10.2214/AJR.07.2556
- Arapakis I, Efstathopoulos E, Tsitsia V, Kordolaimi S, Economopoulos N, Argentos S, et al. Using “iDose4” iterative reconstruction algorithm in adults’ chest–abdomen–pelvis CT examinations: effect on image quality in relation to patient radiation exposure. Br J Radiol. 2014; 87:20130613.10.1259/bjr.20130613
- Bankier AA, Tack D. Dose reduction strategies for thoracic multidetector computed tomography: background, current issues, and recommendations. J Thorac Imaging. 2010; 25:278-88.2104206610.1097/RTI.0b013e3181eebc49
- Trinavarat P, Kritsaneepaiboon S, Rongviriyapanich C, Visrutaratna P, Srinakarin J. Radiation dose from CT scanning: can it be reduced? Asian Biomed. 2011; 5:13-21.
- Ohno Y, Takenaka D, Kanda T, Yoshikawa T, Matsumoto S, Sugihara N, et al. Adaptive iterative dose reduction using 3D processing for reduced- and low-dose pulmonary CT: comparison with standard-dose CT for image noise reduction and radiological findings. AJR. 2012; 199:477-85.10.2214/AJR.11.8275
- McCollough CH, Bruesewitz MR, Kofler JM. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006; 26:503-12.10.1148/rg.26205513816549613
- Li Q, Yu H, Zhang L, Fan L, Liu SY. Combining low tube voltage and iterative reconstruction for contrast-enhanced CT imaging of the chest—initial clinical experience. Clin Radiol. 2013; 68:e249-53.10.1016/j.crad.2012.12.00923428340
- Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008; 28:1451-59.1879431810.1148/rg.285075075
- Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004; 233:649-57.1549889610.1148/radiol.2333031150
- Matsumoto K, Ohno Y, Koyama H, Kono A, Inokawa H, Onishi Y, et al. 3D automatic exposure control for 64-detector row CT: radiation dose reduction in chest phantom study. Eur J Radiol. 2011; 77:522-27.1983617910.1016/j.ejrad.2009.09.012
- Namasivayam S, Kalra MK, Pottala KM, Waldrop SM, Hudgins PA. Optimization of Z-axis automatic exposure control for multidetector row CT evaluation of neck and comparison with fixed tube current technique for image quality and radiation dose. Am J Neuroradiol. 2006; 27:2221-25.
- Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S. Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS. 1989; 97:689-98.266985310.1111/j.1699-0463.1989.tb00464.x
- Goldman LW. Principles of CT: radiation dose and image quality. J Nucl Med Technol. 2007; 35:213-25.10.2967/jnmt.106.03784618006597
- Hamberg LM, Rhea JT, Hunter GJ, Thrall JH. Multi-detector row CT: radiation dose characteristics. Radiology. 2003; 226:762-72.10.1148/radiol.226302020512616020
- McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics. 2002; 22:1541–53.10.1148/rg.22602512812432127
- International Atomic Energy Agency. Quality Assurance program for computed tomography: diagnostic and therapy application. IAEA Human Health Series No 19. Vienna: International Atomic Energy Agency; 2012.
- Funama Y, Awai K, Liu D, Oda S, Yanaga Y, Nakaura T, et al. Detection of nodules showing ground-glass opacity in the lungs at low-dose multidetector computed tomography: phantom and clinical study. J Comput Assist Tomogr. 2009; 33:49-53.10.1097/RCT.0b013e31815e629119188784