Have a personal or library account? Click to login
Steerable Music Generation which Satisfies Long-Range Dependency Constraints Cover

Steerable Music Generation which Satisfies Long-Range Dependency Constraints

By: Paul Bodily and  Dan Ventura  
Open Access
|Mar 2022

References

  1. 1Barbieri, G., Pachet, F., Roy, P., and Esposti, M. D. (2012). Markov constraints for generating lyrics with style. In Proceedings of the European Conference on Artificial Intelligence, pages 115120. IOS Press.
  2. 2Bodily, P. M. and Ventura, D. (2021). Inferring structural constraints in musical sequences via multiple self-alignment. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 43.
  3. 3Briot, J.-P. and Pachet, F. (2020). Deep learning for music generation: Challenges and directions. Neural Computing and Applications, 32(4):981993. DOI: 10.1007/978-3-319-70163-9
  4. 4Collins, T. and Laney, R. (2017). Computer–generated stylistic compositions with long–term repetitive and phrasal structure. Journal of Creative Music Systems, 1(2). DOI: 10.5920/JCMS.2017.02
  5. 5Colton, S., Gow, J., Torres, P., and Cairns, P. A. (2010). Experiments in objet trouvé browsing. In Proceedings of the International Conference on Computational Creativity, pages 238247.
  6. 6Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E., Molino, P., Yosinski, J., and Liu, R. (2019). Plug and play language models: A simple approach to controlled text generation. arXiv preprint arXiv:1912.02164.
  7. 7Davies, M. (2009). The 385+ million word corpus of contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics, 14(2):159190. DOI: 10.1075/ijcl.14.2.02dav
  8. 8Hadjeres, G. and Nielsen, F. (2020). AnticipationRNN: Enforcing unary constraints in sequence generation, with application to interactive music generation. Neural Computing and Applications, 32(4):9951005. DOI: 10.1007/s00521-018-3868-4
  9. 9Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Hawthorne, C., Dai, A., Hoffman, M., and Eck, D. (2018). Music Transformer: Generating music with long-term structure (2018). arXiv preprint arXiv:1809.04281.
  10. 10Louie, R., Cohen, A., Huang, C.-Z. A., Terry, M., and Cai, C. J. (2020). Cococo: AI-steering tools for music novices co-creating with generative models. In 25th International Conference on Intelligent User Interfaces, Workshop on Human-AI Co-Creation with Generative Models.
  11. 11Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of the Association for Computational Linguistics (System Demonstrations), pages5560. DOI: 10.3115/v1/P14-5010
  12. 12Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26, pages 31113119.
  13. 13Nunes, J. C., Ordanini, A., and Valsesia, F. (2015). The power of repetition: Repetitive lyrics in a song increase processing fluency and drive market success. Journal of Consumer Psychology, 25(2):187199. DOI: 10.1016/j.jcps.2014.12.004
  14. 14Oore, S., Simon, I., Dieleman, S., Eck, D., and Simonyan, K. (2020). This time with feeling: Learning expressive musical performance. Neural Computing and Applications, 32(4):955967. DOI: 10.1007/s00521-018-3758-9
  15. 15Pachet, F., Paris, S. C., Papadopoulos, A., and Roy, P. (2017). Sampling variations of sequences for structured music generation. In Proceedings of the International Society for Music Information Retrieval Conference, pages167173. DOI: 10.4324/9781315621364-19
  16. 16Pachet, F., Roy, P., Barbieri, G., and Paris, S. C. (2011). Finite-length Markov processes with constraints. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 635642.
  17. 17Papadopoulos, A., Pachet, F., Roy, P., and Sakellariou, J. (2015). Exact sampling for regular and Markov constraints with belief propagation. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, pages341350. Springer. DOI: 10.1007/978-3-319-23219-5_24
  18. 18Papadopoulos, A., Roy, P., and Pachet, F. (2014). Avoiding plagiarism in Markov sequence generation. In Proceedings of the Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence, pages 27312737.
  19. 19Perez, G. and Régin, J.-C. (2017). MDDs: Sampling and probability constraints. In International Conference on Principles and Practice of Constraint Programming, pages226242. Springer. DOI: 10.1007/978-3-319-66158-2_15
  20. 20Schulze, W. and Van Der Merwe, B. (2011). Music generation with Markov models. IEEE Annals of the History of Computing, 18(03):7885. DOI: 10.1109/MMUL.2010.44
  21. 21Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., and Woelfel, J. (2004). Sphinx-4: A flexible open source framework for speech recognition. Technical report, Sun Microsystems, Inc.
  22. 22Widmer, G. (2016). Getting closer to the essence of music: The Con Espressione manifesto. ACM Transactions on Intelligent Systems and Technology (TIST), 8(2):113. DOI: 10.1145/2899004
DOI: https://doi.org/10.5334/tismir.97 | Journal eISSN: 2514-3298
Language: English
Submitted on: Feb 28, 2021
Accepted on: Feb 11, 2022
Published on: Mar 25, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Paul Bodily, Dan Ventura, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.